Alternatives to Tinybird
Compare Tinybird alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Tinybird in 2024. Compare features, ratings, user reviews, pricing, and more from Tinybird competitors and alternatives in order to make an informed decision for your business.
-
1
StarTree
StarTree
StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready -
2
Peekdata
Peekdata
Consume data from any database, organize it into consistent metrics, and use it with every app. Build your Data and Reporting APIs faster with automated SQL generation, query optimization, access control, consistent metrics definitions, and API design. It takes only days to wrap any data source with a single reference Data API and simplify access to reporting and analytics data across your teams. Make it easy for data engineers and application developers to access the data from any source in a streamlined manner. - The single schema-less Data API endpoint - Review and configure metrics and dimensions in one place via UI - Data model visualization to make faster decisions - Data Export management scheduling AP Ready-to-use Report Builder and JavaScript components for charting libraries (Highcharts, BizCharts, Chart.js, etc.) makes it easy to embed data-rich functionality into your products. And you will not have to make custom report queries anymore!Starting Price: $349 per month -
3
Striim
Striim
Data integration for your hybrid cloud. Modern, reliable data integration across your private and public cloud. All in real-time with change data capture and data streams. Built by the executive & technical team from GoldenGate Software, Striim brings decades of experience in mission-critical enterprise workloads. Striim scales out as a distributed platform in your environment or in the cloud. Scalability is fully configurable by your team. Striim is fully secure with HIPAA and GDPR compliance. Built ground up for modern enterprise workloads in the cloud or on-premise. Drag and drop to create data flows between your sources and targets. Process, enrich, and analyze your streaming data with real-time SQL queries. -
4
Rockset
Rockset
Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.Starting Price: Free -
5
Spark Streaming
Apache Software Foundation
Spark Streaming brings Apache Spark's language-integrated API to stream processing, letting you write streaming jobs the same way you write batch jobs. It supports Java, Scala and Python. Spark Streaming recovers both lost work and operator state (e.g. sliding windows) out of the box, without any extra code on your part. By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join streams against historical data, or run ad-hoc queries on stream state. Build powerful interactive applications, not just analytics. Spark Streaming is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. You can run Spark Streaming on Spark's standalone cluster mode or other supported cluster resource managers. It also includes a local run mode for development. In production, Spark Streaming uses ZooKeeper and HDFS for high availability. -
6
Xano
Xano
Xano provides a fully-managed scaleable infrastructure to power your backend. On top of that security, you can quickly build the business logic that powers your backend without a single line of code or use one of our pre-made templates to launch quickly without sacrificing scale or security. Build custom API endpoints without a single line of code. Accelerate time to market using our out-of-the-box CRUD operations and Marketplace extensions and templates! Your API comes “ready-to-use” so you can immediately connect to any frontend and focus on your business logic. Everything is also automatically documented in Swagger so connecting to a frontend is a breeze. Xano uses PostgreSQL which provides the flexibility of a relational database along with the Big data needs of a NoSQL solution. Add features to your backend in a few clicks or start with ready-made templates and extensions to jumpstart your project.Starting Price: $29 per month -
7
SelectDB
SelectDB
SelectDB is a modern data warehouse based on Apache Doris, which supports rapid query analysis on large-scale real-time data. From Clickhouse to Apache Doris, to achieve the separation of the lake warehouse and upgrade to the lake warehouse. The fast-hand OLAP system carries nearly 1 billion query requests every day to provide data services for multiple scenes. Due to the problems of storage redundancy, resource seizure, complicated governance, and difficulty in querying and adjustment, the original lake warehouse separation architecture was decided to introduce Apache Doris lake warehouse, combined with Doris's materialized view rewriting ability and automated services, to achieve high-performance data query and flexible data governance. Write real-time data in seconds, and synchronize flow data from databases and data streams. Data storage engine for real-time update, real-time addition, and real-time pre-polymerization.Starting Price: $0.22 per hour -
8
Apache Doris
The Apache Software Foundation
Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.Starting Price: Free -
9
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
10
Materialize
Materialize
Materialize is a reactive database that delivers incremental view updates. We help developers easily build with streaming data using standard SQL. Materialize can connect to many different external sources of data without pre-processing. Connect directly to streaming sources like Kafka, Postgres databases, CDC, or historical sources of data like files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are maintained and continually updated as new data streams in. With incrementally-updated views, developers can easily build data visualizations or real-time applications. Building with streaming data can be as simple as writing a few lines of SQL.Starting Price: $0.98 per hour -
11
Google Cloud Datastream
Google
Serverless and easy-to-use change data capture and replication service. Access to streaming data from MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle databases. Near real-time analytics in BigQuery. Easy-to-use setup with built-in secure connectivity for faster time-to-value. A serverless platform that automatically scales, with no resources to provision or manage. Log-based mechanism to reduce the load and potential disruption on source databases. Synchronize data across heterogeneous databases, storage systems, and applications reliably, with low latency, while minimizing impact on source performance. Get up and running fast with a serverless and easy-to-use service that seamlessly scales up or down, and has no infrastructure to manage. Connect and integrate data across your organization with the best of Google Cloud services like BigQuery, Spanner, Dataflow, and Data Fusion. -
12
DeltaStream
DeltaStream
DeltaStream is a unified serverless stream processing platform that integrates with streaming storage services. Think about it as the compute layer on top of your streaming storage. It provides functionalities of streaming analytics(Stream processing) and streaming databases along with additional features to provide a complete platform to manage, process, secure and share streaming data. DeltaStream provides a SQL based interface where you can easily create stream processing applications such as streaming pipelines, materialized views, microservices and many more. It has a pluggable processing engine and currently uses Apache Flink as its primary stream processing engine. DeltaStream is more than just a query processing layer on top of Kafka or Kinesis. It brings relational database concepts to the data streaming world, including namespacing and role based access control enabling you to securely access, process and share your streaming data regardless of where they are stored. -
13
ksqlDB
Confluent
Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation. -
14
Apache Storm
Apache Software Foundation
Apache Storm is a free and open source distributed realtime computation system. Apache Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Apache Storm is simple, can be used with any programming language, and is a lot of fun to use! Apache Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Apache Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate. Apache Storm integrates with the queueing and database technologies you already use. An Apache Storm topology consumes streams of data and processes those streams in arbitrarily complex ways, repartitioning the streams between each stage of the computation however needed. Read more in the tutorial. -
15
Astra Streaming
DataStax
Responsive applications keep users engaged and developers inspired. Rise to meet these ever-increasing expectations with the DataStax Astra Streaming service platform. DataStax Astra Streaming is a cloud-native messaging and event streaming platform powered by Apache Pulsar. Astra Streaming allows you to build streaming applications on top of an elastically scalable, multi-cloud messaging and event streaming platform. Astra Streaming is powered by Apache Pulsar, the next-generation event streaming platform which provides a unified solution for streaming, queuing, pub/sub, and stream processing. Astra Streaming is a natural complement to Astra DB. Using Astra Streaming, existing Astra DB users can easily build real-time data pipelines into and out of their Astra DB instances. With Astra Streaming, avoid vendor lock-in and deploy on any of the major public clouds (AWS, GCP, Azure) compatible with open-source Apache Pulsar. -
16
Aiven
Aiven
Aiven manages your open source data infrastructure in the cloud - so you don't have to. Developers can do what they do best: create applications. We do what we do best: manage cloud data infrastructure. All solutions are open source. You can also freely move data between clouds or create multi-cloud environments. Know exactly how much you’ll be paying and why. We bundle networking, storage and basic support costs together. We are committed to keeping your Aiven software online. If there’s ever an issue, we’ll be there to fix it. Deploy a service on the Aiven platform in 10 minutes. Sign up - no credit card info needed. Select your open source service, and the cloud and region to deploy to. Choose your plan - you have $300 in free credits. Click "Create service" and go on to configure your data sources. Stay in control of your data using powerful open-source services.Starting Price: $200.00 per month -
17
Nussknacker
Nussknacker
Nussknacker is a low-code visual tool for domain experts to define and run real-time decisioning algorithms instead of implementing them in the code. It serves where real-time actions on data have to be made: real-time marketing, fraud detection, Internet of Things, Customer 360, and Machine Learning inferring. An essential part of Nussknacker is a visual design tool for decision algorithms. It allows not-so-technical users – analysts or business people – to define decision logic in an imperative, easy-to-follow, and understandable way. Once authored, with a click of a button, scenarios are deployed for execution. And can be changed and redeployed anytime there’s a need. Nussknacker supports two processing modes: streaming and request-response. In streaming mode, it uses Kafka as its primary interface. It supports both stateful and stateless processing.Starting Price: 0 -
18
CData Python Connectors
CData Software
CData Python Connectors simplify the way that Python users connect to SaaS, Big Data, NoSQL, and relational data sources. Our Python Connectors offer simple Python database interfaces (DB-API), making it easy to connect with popular tooling like Jupyter Notebook, SQLAlchemy, pandas, Dash, Apache Airflow, petl, and more. CData Python Connectors create a SQL wrapper around APIs and data protocols, simplifying data access from within Python and enabling Python users to easily connect more than 150 SaaS, Big Data, NoSQL, and relational data sources with advanced Python processing. The CData Python Connectors fill a critical gap in Python tooling by providing consistent connectivity with data-centric interfaces to hundreds of different SaaS/Cloud, NoSQL, and Big Data sources. Download a 30-day free trial or learn more at: https://www.cdata.com/python/ -
19
Stellate
Stellate
Get ~40ms response times worldwide. Get your users the speed they deserve. Protect your API from traffic spikes and downtime. Allow your users to rely on you, always. Resolve stability issues with auto retries and stale-while-revalidate. Steady wins the race. Reduce your origin load by up to 95%. Handle any traffic spike, avoid downtime and save costs. Get a real-time grip on your API’s usage. Because knowledge is power – to improve. Edit your schema based on usage data and insights. Rely on facts and be confident in your changes. See which country, page and user sent which request. Get granular insights and always know what's going on. Check the origin response times for each query and mutation. Know where to optimize your API. Learn about performance drops and errors the second your users do and resolve them quickly. Track all HTTP & GraphQL errors. Understand when and where users run into issues and fix them.Starting Price: $10 per month -
20
AWS AppSync
Amazon
Accelerate app development with scalable GraphQL APIs. Organizations choose to build APIs with GraphQL because it helps them develop applications faster, by giving front-end developers the ability to query multiple databases, microservices, and APIs with a single GraphQL endpoint. AWS AppSync is a fully managed service that makes it easy to develop GraphQL APIs by handling the heavy lifting of securely connecting to data sources like AWS DynamoDB, Lambda, and more. Adding caches to improve performance, subscriptions to support real-time updates, and client-side data stores that keep off-line clients in sync are just as easy. Once deployed, AWS AppSync automatically scales your GraphQL API execution engine up and down to meet API request volumes. AWS AppSync offers fully managed GraphQL API and Pub/Sub API setup, administration, auto-scaling, and high availability. Easily secure, monitor, log, and trace your API via built-in support for AWS WAF, CloudWatch and X-Ray. -
21
Directus
Monospace Inc
Directus is an Open Data Platform for managing the content of any SQL database. It provides a powerful API layer for developers and an intuitive App for non-technical users. Written entirely in JavaScript (primarily Node.js and Vue.js), Directus is completely open-source, modular, and extensible, allowing it to be fully tailored to your exact project needs. With Directus Cloud, we've taken our open-source spirit to the cloud by offering Directus Community Cloud, a completely free tier - without quotas or limitations. It's ideal for hobby projects and demos, and when you're ready for production, Standard Cloud has the power and infrastructure options you need. Our pricing is usage-based, which means you only pay for what you use. Use Directus on your next headless cms, internal tool, or SaaS project, or use our Insights for better data management and analytics. With Directus, you're only limited by your imagination.Starting Price: Free -
22
Insigna
Insigna
The comprehensive solution for data management and real-time analytics. -
23
Informatica Data Engineering Streaming
Informatica
AI-powered Informatica Data Engineering Streaming enables data engineers to ingest, process, and analyze real-time streaming data for actionable insights. Advanced serverless deployment option with integrated metering dashboard cuts admin overhead. Rapidly build intelligent data pipelines with CLAIRE®-powered automation, including automatic change data capture (CDC). Ingest thousands of databases and millions of files, and streaming events. Efficiently ingest databases, files, and streaming data for real-time data replication and streaming analytics. Find and inventory all data assets throughout your organization. Intelligently discover and prepare trusted data for advanced analytics and AI/ML projects. -
24
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker. -
25
Azure Stream Analytics
Microsoft
Discover Azure Stream Analytics, the easy-to-use, real-time analytics service that is designed for mission-critical workloads. Build an end-to-end serverless streaming pipeline with just a few clicks. Go from zero to production in minutes using SQL—easily extensible with custom code and built-in machine learning capabilities for more advanced scenarios. Run your most demanding workloads with the confidence of a financially backed SLA. -
26
Estuary Flow
Estuary
Estuary Flow is a new kind of DataOps platform that empowers engineering teams to build real-time, data-intensive applications at scale with minimal friction. This platform unifies a team’s databases, pub/sub systems, and SaaS around their data, without requiring new investments in infrastructure or development.Starting Price: $200/month -
27
Leo
Leo
Turn your data into a realtime stream, making it immediately available and ready to use. Leo reduces the complexity of event sourcing by making it easy to create, visualize, monitor, and maintain your data flows. Once you unlock your data, you are no longer limited by the constraints of your legacy systems. Dramatically reduced dev time keeps your developers and stakeholders happy. Adopt microservice architectures to continuously innovate and improve agility. In reality, success with microservices is all about data. An organization must invest in a reliable and repeatable data backbone to make microservices a reality. Implement full-fledged search in your custom app. With data flowing, adding and maintaining a search database will not be a burden.Starting Price: $251 per month -
28
Yandex Data Streams
Yandex
Simplifies data exchange between components in microservice architectures. When used as a transport for microservices, it simplifies integration, increases reliability, and improves scaling. Read and write data in near real-time. Set data throughput and storage times to meet your needs. Enjoy granular configuration of the resources for processing data streams, from small streams of 100 KB/s to streams of 100 MB/s. Deliver a single stream to multiple targets with different retention policies using Yandex Data Transfer. Data is automatically replicated across multiple geographically distributed availability zones. Once created, you can manage data streams centrally in the management console or using the API. Yandex Data Streams can continuously collect data from sources like website browsing histories, application and system logs, and social media feeds. Yandex Data Streams is capable of continuously collecting data from sources such as website browsing histories, application logs, etc.Starting Price: $0.086400 per GB -
29
Apache Flume
Apache Software Foundation
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault-tolerant with tunable reliability mechanisms and many failovers and recovery mechanisms. It uses a simple extensible data model that allows for online analytic applications. The Apache Flume team is pleased to announce the release of Flume 1.8.0. Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of streaming event data. -
30
IBM Streams
IBM
IBM Streams evaluates a broad range of streaming data — unstructured text, video, audio, geospatial and sensor — helping organizations spot opportunities and risks and make decisions in real-time. Make sense of your data, turning fast-moving volumes and varieties into insight with IBM® Streams. Streams evaluate a broad range of streaming data — unstructured text, video, audio, geospatial and sensor — helping organizations spot opportunities and risks as they happen. Combine Streams with other IBM Cloud Pak® for Data capabilities, built on an open, extensible architecture. Help enable data scientists to collaboratively build models to apply to stream flows, plus, analyze massive amounts of data in real-time. Acting upon your data and deriving true value is easier than ever. -
31
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes. -
32
Google Cloud Dataflow
Google
Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization. -
33
Timeplus
Timeplus
Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.Starting Price: $199 per month -
34
TapData
TapData
CDC-based live data platform for heterogeneous database replication, real-time data integration, or building a real-time data warehouse. By using CDC to sync production line data stored in DB2 and Oracle to the modern database, TapData enabled an AI-augmented real-time dispatch software to optimize the semiconductor production line process. The real-time data made instant decision-making in the RTD software a possibility, leading to faster turnaround times and improved yield. As one of the largest telcos, customer has many regional systems that cater to the local customers. By syncing and aggregating data from various sources and locations into a centralized data store, customers were able to build an order center where the collective orders from many applications can now be aggregated. TapData seamlessly integrates inventory data from 500+ stores, providing real-time insights into stock levels and customer preferences, enhancing supply chain efficiency. -
35
Decodable
Decodable
No more low level code and stitching together complex systems. Build and deploy pipelines in minutes with SQL. A data engineering service that makes it easy for developers and data engineers to build and deploy real-time data pipelines for data-driven applications. Pre-built connectors for messaging systems, storage systems, and database engines make it easy to connect and discover available data. For each connection you make, you get a stream to or from the system. With Decodable you can build your pipelines with SQL. Pipelines use streams to send data to, or receive data from, your connections. You can also use streams to connect pipelines together to handle the most complex processing tasks. Observe your pipelines to ensure data keeps flowing. Create curated streams for other teams. Define retention policies on streams to avoid data loss during external system failures. Real-time health and performance metrics let you know everything’s working.Starting Price: $0.20 per task per hour -
36
Apache Beam
Apache Software Foundation
The easiest way to do batch and streaming data processing. Write once, run anywhere data processing for mission-critical production workloads. Beam reads your data from a diverse set of supported sources, no matter if it’s on-prem or in the cloud. Beam executes your business logic for both batch and streaming use cases. Beam writes the results of your data processing logic to the most popular data sinks in the industry. A simplified, single programming model for both batch and streaming use cases for every member of your data and application teams. Apache Beam is extensible, with projects such as TensorFlow Extended and Apache Hop built on top of Apache Beam. Execute pipelines on multiple execution environments (runners), providing flexibility and avoiding lock-in. Open, community-based development and support to help evolve your application and meet the needs of your specific use cases. -
37
Apache Flink
Apache Software Foundation
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Any kind of data is produced as a stream of events. Credit card transactions, sensor measurements, machine logs, or user interactions on a website or mobile application, all of these data are generated as a stream. Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms and data structures that are specifically designed for fixed sized data sets, yielding excellent performance. Flink is designed to work well each of the previously listed resource managers. -
38
Amazon Kinesis
Amazon
Easily collect, process, and analyze video and data streams in real time. Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. Amazon Kinesis offers key capabilities to cost-effectively process streaming data at any scale, along with the flexibility to choose the tools that best suit the requirements of your application. With Amazon Kinesis, you can ingest real-time data such as video, audio, application logs, website clickstreams, and IoT telemetry data for machine learning, analytics, and other applications. Amazon Kinesis enables you to process and analyze data as it arrives and respond instantly instead of having to wait until all your data is collected before the processing can begin. Amazon Kinesis enables you to ingest, buffer, and process streaming data in real-time, so you can derive insights in seconds or minutes instead of hours or days. -
39
3forge
3forge
Your enterprise's issues may be complex. That doesn't mean building the solution has to be. 3forge is the highly-flexible, low-code platform that empowers enterprise application development in record time. Reliability? Check. Scalability? That too. Deliverability? In record time. Even for the most complex work flows and data sets. With 3forge, you no longer have to choose. Data integration, virtualization, processing, visualization, and workflows all living in one place - solving the world's most complex real-time streaming data challenges. 3forge provides award-winning technology that enables developers to deploy mission-critical applications in record time. Experience the difference of real-time data and zero latency with 3forge's focus on data integration, virtualization, processing, and visualization. -
40
Memgraph
Memgraph
Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. -
41
Samza
Apache Software Foundation
Samza allows you to build stateful applications that process data in real-time from multiple sources including Apache Kafka. Battle-tested at scale, it supports flexible deployment options to run on YARN or as a standalone library. Samza provides extremely low latencies and high throughput to analyze your data instantly. Scales to several terabytes of state with features like incremental checkpoints and host-affinity. Samza is easy to operate with flexible deployment options - YARN, Kubernetes or standalone. Ability to run the same code to process both batch and streaming data. Integrates with several sources including Kafka, HDFS, AWS Kinesis, Azure Eventhubs, K-V stores and ElasticSearch. -
42
Streaming service is a real-time, serverless, Apache Kafka-compatible event streaming platform for developers and data scientists. Streaming is tightly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. The service also provides out-of-the-box integrations for hundreds of third-party products across categories such as DevOps, databases, big data, and SaaS applications. Data engineers can easily set up and operate big data pipelines. Oracle handles all infrastructure and platform management for event streaming, including provisioning, scaling, and security patching. With the help of consumer groups, Streaming can provide state management for thousands of consumers. This helps developers easily build applications at scale.
-
43
Aerospike
Aerospike
Aerospike is the global leader in next-generation, real-time NoSQL data solutions for any scale. Aerospike enterprises overcome seemingly impossible data bottlenecks to compete and win with a fraction of the infrastructure complexity and cost of legacy NoSQL databases. Aerospike’s patented Hybrid Memory Architecture™ delivers an unbreakable competitive advantage by unlocking the full potential of modern hardware, delivering previously unimaginable value from vast amounts of data at the edge, to the core and in the cloud. Aerospike empowers customers to instantly fight fraud; dramatically increase shopping cart size; deploy global digital payment networks; and deliver instant, one-to-one personalization for millions of customers. Aerospike customers include Airtel, Banca d’Italia, Nielsen, PayPal, Snap, Verizon Media and Wayfair. The company is headquartered in Mountain View, Calif., with additional locations in London; Bengaluru, India; and Tel Aviv, Israel. -
44
Redpanda
Redpanda Data
Breakthrough data streaming capabilities that let you deliver customer experiences never before possible. Kafka API and ecosystem are compatible. Redpanda BulletPredictable low latencies with zero data loss. Redpanda BulletUpto 10x faster than Kafka. Redpanda BulletEnterprise-grade support and hotfixes. Redpanda BulletAutomated backups to S3/GCS. Redpanda Bullet100% freedom from routine Kafka operations. Redpanda BulletSupport for AWS and GCP. Redpanda was designed from the ground up to be easily installed to get streaming up and running quickly. After you see its power, put Redpanda to the test in production. Use the more advanced Redpanda features. We manage provisioning, monitoring, and upgrades. Without any access to your cloud credentials. Sensitive data never leaves your environment. Provisioned, operated, and maintained for you. Configurable instance types. Expand cluster as your needs grow. -
45
WarpStream
WarpStream
WarpStream is an Apache Kafka-compatible data streaming platform built directly on top of object storage, with no inter-AZ networking costs, no disks to manage, and infinitely scalable, all within your VPC. WarpStream is deployed as a stateless and auto-scaling agent binary in your VPC with no local disks to manage. Agents stream data directly to and from object storage with no buffering on local disks and no data tiering. Create new “virtual clusters” in our control plane instantly. Support different environments, teams, or projects without managing any dedicated infrastructure. WarpStream is protocol compatible with Apache Kafka, so you can keep using all your favorite tools and software. No need to rewrite your application or use a proprietary SDK. Just change the URL in your favorite Kafka client library and start streaming. Never again have to choose between reliability and your budget.Starting Price: $2,987 per month -
46
HarperDB
HarperDB
HarperDB is a distributed systems platform that combines database, caching, application, and streaming functions into a single technology. With it, you can start delivering global-scale back-end services with less effort, higher performance, and lower cost than ever before. Deploy user-programmed applications and pre-built add-ons on top of the data they depend on for a high throughput, ultra-low latency back end. Lightning-fast distributed database delivers orders of magnitude more throughput per second than popular NoSQL alternatives while providing limitless horizontal scale. Native real-time pub/sub communication and data processing via MQTT, WebSocket, and HTTP interfaces. HarperDB delivers powerful data-in-motion capabilities without layering in additional services like Kafka. Focus on features that move your business forward, not fighting complex infrastructure. You can't change the speed of light, but you can put less light between your users and their data.Starting Price: Free -
47
Apache NiFi
Apache Software Foundation
An easy to use, powerful, and reliable system to process and distribute data. Apache NiFi supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic. Some of the high-level capabilities and objectives of Apache NiFi include web-based user interface, offering a seamless experience between design, control, feedback, and monitoring. Highly configurable, loss tolerant, low latency, high throughput, and dynamic prioritization. Flow can be modified at runtime, back pressure, data provenance, track dataflow from beginning to end, designed for extension. Build your own processors and more. Enables rapid development and effective testing. Secure, SSL, SSH, HTTPS, encrypted content, and much more. Multi-tenant authorization and internal authorization/policy management. NiFi is comprised of a number of web applications (web UI, web API, documentation, custom UI's, etc). So, you'll need to set up your mapping to the root path. -
48
SQLstream
Guavus, a Thales company
SQLstream ranks #1 for IoT stream processing & analytics (ABI Research). Used by Verizon, Walmart, Cisco, & Amazon, our technology powers applications across data centers, the cloud, & the edge. Thanks to sub-ms latency, SQLstream enables live dashboards, time-critical alerts, & real-time action. Smart cities can optimize traffic light timing or reroute ambulances & fire trucks. Security systems can shut down hackers & fraudsters right away. AI / ML models, trained by streaming sensor data, can predict equipment failures. With lightning performance, up to 13M rows / sec / CPU core, companies have drastically reduced their footprint & cost. Our efficient, in-memory processing permits operations at the edge that are otherwise impossible. Acquire, prepare, analyze, & act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code GUI dev environment. Export SQL scripts & deploy with the flexibility of Kubernetes. -
49
Baidu AI Cloud Stream Computing
Baidu AI Cloud
Baidu Stream Computing (BSC) provides real-time streaming data processing capacity with low delay, high throughput and high accuracy. It is fully compatible with Spark SQL; and can realize the logic data processing of complicated businesses through SQL statement, which is easy to use; provides users with full life cycle management for the streaming-oriented computing jobs. Integrate deeply with multiple storage products of Baidu AI Cloud as the upstream and downstream of stream computing, including Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, SCS and others. Provide a comprehensive job monitoring indicator, and the user can view the monitoring indicators of the job and set the alarm rules to protect the job. -
50
Geckoboard
Geckoboard
Build and share real-time business dashboards without the hassle. Geckoboard integrates with over 80 tools to help you pull in your data and get a professional-looking dashboard in front of others in a matter of minutes. Create dashboards directly in your browser with a straightforward, drag-and-drop interface, and bring important numbers, metrics and KPIs out of lifeless reports. Geckoboard makes your key data more engaging for everyone, with visualizations that anyone can understand at a glance, and that update automatically to always stay up-to-date. When you're ready, share your dashboard with a link, invite your teammates, schedule email and Slack updates to go out automatically, or display it proudly in the office on a big screen or TV.Starting Price: $35 per month