Amazon SageMaker HyperPod
Amazon SageMaker HyperPod is a purpose-built, resilient compute infrastructure that simplifies and accelerates the development of large AI and machine-learning models by handling distributed training, fine-tuning, and inference across clusters with hundreds or thousands of accelerators, including GPUs and AWS Trainium chips. It removes the heavy lifting involved in building and managing ML infrastructure by providing persistent clusters that automatically detect and repair hardware failures, automatically resume workloads, and optimize checkpointing to minimize interruption risk, enabling months-long training jobs without disruption. HyperPod offers centralized resource governance; administrators can set priorities, quotas, and task-preemption rules so compute resources are allocated efficiently among tasks and teams, maximizing utilization and reducing idle time. It also supports “recipes” and pre-configured settings to quickly fine-tune or customize foundation models.
Learn more
Nebius Token Factory
Nebius Token Factory is a scalable AI inference platform designed to run open-source and custom AI models in production without manual infrastructure management. It offers enterprise-ready inference endpoints with predictable performance, autoscaling throughput, and sub-second latency — even at very high request volumes. It delivers 99.9% uptime availability and supports unlimited or tailored traffic profiles based on workload needs, simplifying the transition from experimentation to global deployment. Nebius Token Factory supports a broad set of open source models such as Llama, Qwen, DeepSeek, GPT-OSS, Flux, and many others, and lets teams host and fine-tune models through an API or dashboard. Users can upload LoRA adapters or full fine-tuned variants directly, with the same enterprise performance guarantees applied to custom models.
Learn more
Tülu 3
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
Learn more
Amazon Nova Forge
Amazon Nova Forge is a groundbreaking service that enables organizations to build their own frontier models by leveraging early Nova checkpoints and proprietary data. It provides complete flexibility across the full training lifecycle, including pre-training, mid-training, supervised fine-tuning, and reinforcement learning. With access to Nova-curated datasets and responsible AI tooling, customers can create powerful and safer custom models tailored to their domain. Nova Forge allows teams to mix their own datasets at the peak learning stage to maximize accuracy while preventing catastrophic forgetting. Companies across industries—from Reddit to Sony—use Nova Forge to consolidate ML workflows, accelerate innovation, and outperform specialized models. Hosted securely on AWS, it offers the most cost-effective, streamlined path to building next-generation AI systems.
Learn more