Audience
AI developers, data scientists, and machine vision teams who need high-quality, custom synthetic image datasets to train and improve computer vision and AI models
About Symage
Symage is a synthetic data platform that generates custom, photorealistic image datasets with automated pixel-perfect labeling to support training and improving AI and computer vision models; using physics-based rendering and simulation rather than generative AI, it produces high-fidelity synthetic images that mirror real-world conditions and handle diverse scenarios, lighting, camera angles, object motion, and edge cases with controlled precision, which helps eliminate data bias, reduce manual labeling, and dramatically cut data preparation time by up to 90%. Designed to give teams the right data for model training rather than relying on limited real datasets, Symage lets users tailor environments and variables to match specific use cases, ensuring datasets are balanced, scalable, and accurately labeled at every pixel. It is built on decades of expertise in robotics, AI, machine learning, and simulation, offering a way to overcome data scarcity and boost model accuracy.