Alternatives to StableVicuna

Compare StableVicuna alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to StableVicuna in 2025. Compare features, ratings, user reviews, pricing, and more from StableVicuna competitors and alternatives in order to make an informed decision for your business.

  • 1
    Pi

    Pi

    Inflection AI

    Pi is your personal AI, designed to be supportive, smart, and there for you anytime. The name stands for ‘personal intelligence’, because Pi provides infinite knowledge based on your unique interests. Pi can be a coach, confidante, creative partner, sounding board and assistant. However big, small or random, Pi is here for it. Pi explains even the most complicated ideas in a clear and straightforward way. No matter what you’re going through, Pi is here to talk it over in a kind and compassionate way. Trying to think of a better phrase, a creative party theme, or a good gift? Pi will help you find inspiration and strengthen your ideas. Pi is there to talk it over, thinking through the pros and cons, and helping you figure out a way forward. Pi will help you organize your thoughts, make clear plans and act on them – whether you're changing jobs, trying to get healthier, or learning a new skill. Pi’s here to spice it up, shoot the breeze, explore new interests or just chit chat.
  • 2
    Vicuna

    Vicuna

    lmsys.org

    Vicuna-13B is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. Preliminary evaluation using GPT-4 as a judge shows Vicuna-13B achieves more than 90%* quality of OpenAI ChatGPT and Google Bard while outperforming other models like LLaMA and Stanford Alpaca in more than 90%* of cases. The cost of training Vicuna-13B is around $300. The code and weights, along with an online demo, are publicly available for non-commercial use.
  • 3
    LLaVA

    LLaVA

    LLaVA

    LLaVA (Large Language-and-Vision Assistant) is an innovative multimodal model that integrates a vision encoder with the Vicuna language model to facilitate comprehensive visual and language understanding. Through end-to-end training, LLaVA exhibits impressive chat capabilities, emulating the multimodal functionalities of models like GPT-4. Notably, LLaVA-1.5 has achieved state-of-the-art performance across 11 benchmarks, utilizing publicly available data and completing training in approximately one day on a single 8-A100 node, surpassing methods that rely on billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been instrumental in training LLaVA to perform a wide array of visual and language tasks effectively.
  • 4
    Stable Beluga

    Stable Beluga

    Stability AI

    Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.
  • 5
    Hermes 3

    Hermes 3

    Nous Research

    Experiment, and push the boundaries of individual alignment, artificial consciousness, open-source software, and decentralization, in ways that monolithic companies and governments are too afraid to try. Hermes 3 contains advanced long-term context retention and multi-turn conversation capability, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Our training data aggressively encourages the model to follow the system and instruction prompts exactly and in an adaptive manner. Hermes 3 was created by fine-tuning Llama 3.1 8B, 70B, and 405B, and training on a dataset of primarily synthetically generated responses. The model boasts comparable and superior performance to Llama 3.1 while unlocking deeper capabilities in reasoning and creativity. Hermes 3 is a series of instruct and tool-use models with strong reasoning and creative abilities.
  • 6
    StableCode

    StableCode

    Stability AI

    StableCode offers a unique way for developers to become more efficient by using three different models to help in their coding. The base model was first trained on a diverse set of programming languages from the stack-dataset (v1.2) from BigCode and then trained further with popular languages like Python, Go, Java, Javascript, C, markdown and C++. In total, we trained our models on 560B tokens of code on our HPC cluster. After the base model had been established, the instruction model was then tuned for specific use cases to help solve complex programming tasks. ~120,000 code instruction/response pairs in Alpaca format were trained on the base model to achieve this result. StableCode is the ideal building block for those wanting to learn more about coding, and the long-context window model is the perfect assistant to ensure single and multiple-line autocomplete suggestions are available for the user. This model is built to handle a lot more code at once.
  • 7
    Llama 2
    The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
  • 8
    Dolly

    Dolly

    Databricks

    Dolly is a cheap-to-build LLM that exhibits a surprising degree of the instruction following capabilities exhibited by ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly works by taking an existing open source 6 billion parameter model from EleutherAI and modifying it ever so slightly to elicit instruction following capabilities such as brainstorming and text generation not present in the original model, using data from Alpaca.
  • 9
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
  • 10
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.
  • 11
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
  • 12
    Tülu 3
    Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
  • 13
    Alpaca

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model.
  • 14
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 15
    Reka

    Reka

    Reka

    Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets.
  • 16
    v0

    v0

    Vercel

    v0 is a generative user interface system powered by AI by Vercel. It generates copy-and-paste friendly React code based on shadcn/ui and Tailwind CSS that people can use in their projects. v0 uses AI models to generate code based on simple text prompts. After you submit your prompt, we give you three choices of AI-generated user interfaces. You can choose one and copy-paste its code, or refine it further. To refine, you can select individual parts of the generated UI to fine-tune your creation. When you are ready, you can copy, paste, and ship. Vercel's products are trained on custom code our team has written mixed with open-source and synthetic datasets. Vercel may use user-generated prompts and/or content as inputs to models and learning systems from third-party providers to improve our products. Using this data gives Vercel the ability to provide more accurate and relevant recommendations to our users.
    Starting Price: $20 per month
  • 17
    Llama 3.3
    Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.
  • 18
    Stable LM

    Stable LM

    Stability AI

    Stable LM: Stability AI Language Models. The release of Stable LM builds on our experience in open-sourcing earlier language models with EleutherAI, a nonprofit research hub. These language models include GPT-J, GPT-NeoX, and the Pythia suite, which were trained on The Pile open-source dataset. Many recent open-source language models continue to build on these efforts, including Cerebras-GPT and Dolly-2. Stable LM is trained on a new experimental dataset built on The Pile, but three times larger with 1.5 trillion tokens of content. We will release details on the dataset in due course. The richness of this dataset gives Stable LM surprisingly high performance in conversational and coding tasks, despite its small size of 3 to 7 billion parameters (by comparison, GPT-3 has 175 billion parameters). Stable LM 3B is a compact language model designed to operate on portable digital devices like handhelds and laptops, and we’re excited about its capabilities and portability.
  • 19
    Entry Point AI

    Entry Point AI

    Entry Point AI

    Entry Point AI is the modern AI optimization platform for proprietary and open source language models. Manage prompts, fine-tunes, and evals all in one place. When you reach the limits of prompt engineering, it’s time to fine-tune a model, and we make it easy. Fine-tuning is showing a model how to behave, not telling. It works together with prompt engineering and retrieval-augmented generation (RAG) to leverage the full potential of AI models. Fine-tuning can help you to get better quality from your prompts. Think of it like an upgrade to few-shot learning that bakes the examples into the model itself. For simpler tasks, you can train a lighter model to perform at or above the level of a higher-quality model, greatly reducing latency and cost. Train your model not to respond in certain ways to users, for safety, to protect your brand, and to get the formatting right. Cover edge cases and steer model behavior by adding examples to your dataset.
    Starting Price: $49 per month
  • 20
    DeepEval

    DeepEval

    Confident AI

    DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
  • 21
    Falcon-40B

    Falcon-40B

    Technology Innovation Institute (TII)

    Falcon-40B is a 40B parameters causal decoder-only model built by TII and trained on 1,000B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-40B? It is the best open-source model currently available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions. ⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases. If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at Falcon-40B-Instruct.
  • 22
    Lamini

    Lamini

    Lamini

    Lamini makes it possible for enterprises to turn proprietary data into the next generation of LLM capabilities, by offering a platform for in-house software teams to uplevel to OpenAI-level AI teams and to build within the security of their existing infrastructure. Guaranteed structured output with optimized JSON decoding. Photographic memory through retrieval-augmented fine-tuning. Improve accuracy, and dramatically reduce hallucinations. Highly parallelized inference for large batch inference. Parameter-efficient finetuning that scales to millions of production adapters. Lamini is the only company that enables enterprise companies to safely and quickly develop and control their own LLMs anywhere. It brings several of the latest technologies and research to bear that was able to make ChatGPT from GPT-3, as well as Github Copilot from Codex. These include, among others, fine-tuning, RLHF, retrieval-augmented training, data augmentation, and GPU optimization.
    Starting Price: $99 per month
  • 23
    Oumi

    Oumi

    Oumi

    Oumi is a fully open source platform that streamlines the entire lifecycle of foundation models, from data preparation and training to evaluation and deployment. It supports training and fine-tuning models ranging from 10 million to 405 billion parameters using state-of-the-art techniques such as SFT, LoRA, QLoRA, and DPO. The platform accommodates both text and multimodal models, including architectures like Llama, DeepSeek, Qwen, and Phi. Oumi offers tools for data synthesis and curation, enabling users to generate and manage training datasets effectively. For deployment, it integrates with popular inference engines like vLLM and SGLang, ensuring efficient model serving. The platform also provides comprehensive evaluation capabilities across standard benchmarks to assess model performance. Designed for flexibility, Oumi can run on various environments, from local laptops to cloud infrastructures such as AWS, Azure, GCP, and Lambda.
  • 24
    Ferret

    Ferret

    Apple

    An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.
  • 25
    Defense Llama
    Scale AI is proud to announce Defense Llama, the Large Language Model (LLM) built on Meta’s Llama 3 that is specifically customized and fine-tuned to support American national security missions. Defense Llama, available exclusively in controlled U.S. government environments within Scale Donovan, empowers our service members and national security professionals to apply the power of generative AI to their unique use cases, such as planning military or intelligence operations and understanding adversary vulnerabilities. Defense Llama was trained on a vast dataset, including military doctrine, international humanitarian law, and relevant policies designed to align with the Department of Defense (DoD) guidelines for armed conflict as well as the DoD’s Ethical Principles for Artificial Intelligence. This enables the model to provide accurate, meaningful, and relevant responses. Scale is proud to enable U.S. national security personnel to use generative AI safely and securely for defense.
  • 26
    Helix AI

    Helix AI

    Helix AI

    Build and optimize text and image AI for your needs, train, fine-tune, and generate from your data. We use best-in-class open source models for image and language generation and can train them in minutes thanks to LoRA fine-tuning. Click the share button to create a link to your session, or create a bot. Optionally deploy to your own fully private infrastructure. You can start chatting with open source language models and generating images with Stable Diffusion XL by creating a free account right now. Fine-tuning your model on your own text or image data is as simple as drag’n’drop, and takes 3-10 minutes. You can then chat with and generate images from those fine-tuned models straight away, all using a familiar chat interface.
    Starting Price: $20 per month
  • 27
    PygmalionAI

    PygmalionAI

    PygmalionAI

    PygmalionAI is a community dedicated to creating open-source projects based on EleutherAI's GPT-J 6B and Meta's LLaMA models. In simple terms, Pygmalion makes AI fine-tuned for chatting and roleplaying purposes. The current actively supported Pygmalion AI model is the 7B variant, based on Meta AI's LLaMA model. With only 18GB (or less) VRAM required, Pygmalion offers better chat capability than much larger language models with relatively minimal resources. Our curated dataset of high-quality roleplaying data ensures that your bot will be the optimal RP partner. Both the model weights and the code used to train it are completely open-source, and you can modify/re-distribute it for whatever purpose you want. Language models, including Pygmalion, generally run on GPUs since they need access to fast memory and massive processing power in order to output coherent text at an acceptable speed.
  • 28
    Sky-T1

    Sky-T1

    NovaSky

    Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.
  • 29
    Waifu Diffusion

    Waifu Diffusion

    Waifu Diffusion

    Waifu Diffusion is an AI image model that creates anime images from text descriptions. It's based on the Stable Diffusion model, which is a latent text-to-image model. Waifu Diffusion is trained on a large number of high-quality anime images. Waifu Diffusion can be used for entertainment purposes and as a generative art assistant. It continuously learns from user feedback, fine-tuning its image generation process. This iterative approach ensures that the model adapts and improves over time, enhancing the quality and accuracy of the generated waifus.
  • 30
    16x Prompt

    16x Prompt

    16x Prompt

    Manage source code context and generate optimized prompts. Ship with ChatGPT and Claude. 16x Prompt helps developers manage source code context and prompts to complete complex coding tasks on existing codebases. Enter your own API key to use APIs from OpenAI, Anthropic, Azure OpenAI, OpenRouter, or 3rd party services that offer OpenAI API compatibility, such as Ollama and OxyAPI. Using API avoids leaking your code to OpenAI or Anthropic training data. Compare the code output of different LLM models (for example, GPT-4o & Claude 3.5 Sonnet) side-by-side to see which one is the best for your use case. Craft and save your best prompts as task instructions or custom instructions to use across different tech stacks like Next.js, Python, and SQL. Fine-tune your prompt with various optimization settings to get the best results. Organize your source code context using workspaces to manage multiple repositories and projects in one place and switch between them easily.
    Starting Price: $24 one-time payment
  • 31
    ChatLabs

    ChatLabs

    ChatLabs

    Experience the power of the best AI models in one streamlined platform with ChatLabs. We've got everything from chatting, writing, and web searching to generating incredible art. You can choose the right AI for every task if you prefer using GPT-4, Claude Opus, Gemini, or Llama 3. AI Assistants & Bots Unlock limitless possibilities with customizable AI assistants. Please choose from our pre-built options or design your own, fine-tuning them with your specific files. The only limit is your imagination. Our AI Prompt Library helps you organize frequently used prompts well-structured so that you can access them quickly and efficiently—no need for repetition. AI Art & Image Creation: Generate breathtaking visuals using our advanced AI tools like FLUX.1, DALL-E 3, and Stable Diffusion 3. Whether It's for personal or professional use, the possibilities are endless.
    Starting Price: $9.99 per month
  • 32
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
  • 33
    Aya

    Aya

    Cohere AI

    Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date.
  • 34
    prompteasy.ai

    prompteasy.ai

    prompteasy.ai

    You can now fine-tune GPT with absolutely zero technical skills. Enhance AI models by tailoring them to your specific needs. Prompteasy.ai helps you fine-tune AI models in a matter of seconds. We make AI tailored to your needs by helping you fine-tune it. The best part is, that you don't even have to know AI fine-tuning. Our AI models will take care of everything. We will be offering prompteasy for free as part of our initial launch. We'll be rolling out pricing plans later this year. Our vision is to make AI smart and easily accessible to anyone. We believe that the true power of AI lies in how we train and orchestrate the foundational models, as opposed to just using them off the shelf. Forget generating massive datasets, just upload relevant materials and interact with our AI through natural language. We take care of building the dataset ready for fine-tuning. You just chat with the AI, download the dataset, and fine-tune GPT.
  • 35
    Riku

    Riku

    Riku

    Fine-tuning happens when you take a dataset and build out a model to use with AI. It isn't always easy to do this without code so we built a solution into RIku which handles everything in a very simple format. Fine-tuning unlocks a whole new level of power for AI and we're excited to help you explore it. Public Share Links are individual landing pages that you can create for any of your prompts. You can design these with your brand in mind in terms of colors and adding a logo and your own welcome text. Share these links with anyone publicly and if they have the password to unlock it, they will be able to make generations. A no-code writing assistant builder on a micro scale for your audience! One of the big headaches we found with projects using multiple large language models is that they all return their outputs slightly differently.
    Starting Price: $29 per month
  • 36
    ChainForge

    ChainForge

    ChainForge

    ChainForge is an open-source visual programming environment designed for prompt engineering and large language model evaluation. It enables users to assess the robustness of prompts and text-generation models beyond anecdotal evidence. Simultaneously test prompt ideas and variations across multiple LLMs to identify the most effective combinations. Evaluate response quality across different prompts, models, and settings to select the optimal configuration for specific use cases. Set up evaluation metrics and visualize results across prompts, parameters, models, and settings, facilitating data-driven decision-making. Manage multiple conversations simultaneously, template follow-up messages, and inspect outputs at each turn to refine interactions. ChainForge supports various model providers, including OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and locally hosted models like Alpaca and Llama. Users can adjust model settings and utilize visualization nodes.
  • 37
    Teuken 7B

    Teuken 7B

    OpenGPT-X

    Teuken-7B is a multilingual, open source language model developed under the OpenGPT-X initiative, specifically designed to cater to Europe's diverse linguistic landscape. It has been trained on a dataset comprising over 50% non-English texts, encompassing all 24 official languages of the European Union, ensuring robust performance across these languages. A key innovation in Teuken-7B is its custom multilingual tokenizer, optimized for European languages, which enhances training efficiency and reduces inference costs compared to standard monolingual tokenizers. The model is available in two versions, Teuken-7B-Base, the foundational pre-trained model, and Teuken-7B-Instruct, which has undergone instruction tuning for improved performance in following user prompts. Both versions are accessible on Hugging Face, promoting transparency and collaboration within the AI community. The development of Teuken-7B underscores a commitment to creating AI models that reflect Europe's diversity.
  • 38
    Codestral

    Codestral

    Mistral AI

    We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.
  • 39
    StarCoder

    StarCoder

    BigCode

    StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.
  • 40
    FinetuneDB

    FinetuneDB

    FinetuneDB

    Capture production data, evaluate outputs collaboratively, and fine-tune your LLM's performance. Know exactly what goes on in production with an in-depth log overview. Collaborate with product managers, domain experts and engineers to build reliable model outputs. Track AI metrics such as speed, quality scores, and token usage. Copilot automates evaluations and model improvements for your use case. Create, manage, and optimize prompts to achieve precise and relevant interactions between users and AI models. Compare foundation models, and fine-tuned versions to improve prompt performance and save tokens. Collaborate with your team to build a proprietary fine-tuning dataset for your AI models. Build custom fine-tuning datasets to optimize model performance for specific use cases.
  • 41
    Kontech

    Kontech

    Kontech.ai

    Find out if your product is viable in the world's emerging markets without breaking your bank. Instantly access both quantitative and qualitative data obtained, evaluated, self-trained and validated by professional marketers and user researchers with over 20 years experience in the field. Gain culturally-aware insights into consumer behavior, product innovation, market trends and human-centric business strategies. Kontech.ai leverages Retrieval-Augmented Generation (RAG) to enrich our AI with the latest, diverse and exclusive knowledge base, ensuring highly accurate and trusted insights. Specialized fine-tuning with highly refined proprietary training dataset further improves the deep understanding of user behavior and market dynamics, transforming complex research into actionable intelligence.
  • 42
    Deep Lake

    Deep Lake

    activeloop

    Generative AI may be new, but we've been building for this day for the past 5 years. Deep Lake thus combines the power of both data lakes and vector databases to build and fine-tune enterprise-grade, LLM-based solutions, and iteratively improve them over time. Vector search does not resolve retrieval. To solve it, you need a serverless query for multi-modal data, including embeddings or metadata. Filter, search, & more from the cloud or your laptop. Visualize and understand your data, as well as the embeddings. Track & compare versions over time to improve your data & your model. Competitive businesses are not built on OpenAI APIs. Fine-tune your LLMs on your data. Efficiently stream data from remote storage to the GPUs as models are trained. Deep Lake datasets are visualized right in your browser or Jupyter Notebook. Instantly retrieve different versions of your data, materialize new datasets via queries on the fly, and stream them to PyTorch or TensorFlow.
    Starting Price: $995 per month
  • 43
    Airtrain

    Airtrain

    Airtrain

    Query and compare a large selection of open-source and proprietary models at once. Replace costly APIs with cheap custom AI models. Customize foundational models on your private data to adapt them to your particular use case. Small fine-tuned models can perform on par with GPT-4 and are up to 90% cheaper. Airtrain’s LLM-assisted scoring simplifies model grading using your task descriptions. Serve your custom models from the Airtrain API in the cloud or within your secure infrastructure. Evaluate and compare open-source and proprietary models across your entire dataset with custom properties. Airtrain’s powerful AI evaluators let you score models along arbitrary properties for a fully customized evaluation. Find out what model generates outputs compliant with the JSON schema required by your agents and applications. Your dataset gets scored across models with standalone metrics such as length, compression, coverage.
  • 44
    MPT-7B

    MPT-7B

    MosaicML

    Introducing MPT-7B, the latest entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Now you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens!
  • 45
    LongLLaMA

    LongLLaMA

    LongLLaMA

    This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.
  • 46
    Ilus AI

    Ilus AI

    Ilus AI

    The quickest way to get started with our illustration generator is to use pre-made models. If you want to depict a style or an object that is not available in the premade models you can train your own fine tune by uploading 5-15 illustrations. there are no limits to fine-tuning you can use it for illustrations icons or any assets you need. Read more about fine-tuning. Illustrations are exportable in PNG and SVG formats. Fine-tuning allows you to train the stable-diffusion AI model, on a particular object or style, and create a new model that generates images of those objects or styles. The fine-tuning will be only as good as the data you provide. Around 5-15 images are recommended for fine-tuning. Images can be of any unique object or style. Images should contain only the subject itself, without background noise or other objects. Images must not include any gradients or shadows if you want to export it as SVG later. PNG export still works fine with gradients and shadows.
    Starting Price: $0.06 per credit
  • 47
    OpenLLaMA

    OpenLLaMA

    OpenLLaMA

    OpenLLaMA is a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset. Our model weights can serve as the drop in replacement of LLaMA 7B in existing implementations. We also provide a smaller 3B variant of LLaMA model.
  • 48
    Octave TTS

    Octave TTS

    Hume AI

    Hume AI has introduced Octave (Omni-capable Text and Voice Engine), a groundbreaking text-to-speech system that leverages large language model technology to understand and interpret the context of words, enabling it to generate speech with appropriate emotions, rhythm, and cadence, unlike traditional TTS models that merely read text, Octave acts akin to a human actor, delivering lines with nuanced expression based on the content. Users can create diverse AI voices by providing descriptive prompts, such as "a sarcastic medieval peasant," allowing for tailored voice generation that aligns with specific character traits or scenarios. Additionally, Octave offers the flexibility to modify the emotional delivery and speaking style through natural language instructions, enabling commands like "sound more enthusiastic" or "whisper fearfully" to fine-tune the output.
    Starting Price: $3 per month
  • 49
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
  • 50
    thinkdeeply

    thinkdeeply

    Think Deeply

    Discover from a variety of assets to jump-start your AI project. The AI hub provides a rich collection of artifacts that your project may need - industry AI starter kits, datasets, notebooks, pre-trained models, deployment-ready solutions & pipelines. Get access to the best resources from external parties, or created by your organization. Prepare and manage your data for model training. Collect, organize, tag, or select features, and prepare datasets for training with simple drag and drop UI. Collaborate with multiple team members to tag large datasets. Implement a quality control process to ensure dataset quality. Build models with simple clicks using the model wizards. No data science knowledge required. The system selects the best models for the problem and optimizes their training parameters. Advanced users, however, can fine-tune the models and their hyper-parameters. One-click deployment to production inference enviornments.