Audience
Developers interested in a powerful large language model
About Stable Beluga
Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.
Other Popular Alternatives & Related Software
Llama 2
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters.
Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations.
Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests.
Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations.
We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
Learn more
Llama
Llama (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as Llama enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field.
Training smaller foundation models like Llama is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making Llama available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a Llama model card that details how we built the model in keeping with our approach to Responsible AI practices.
Learn more
StableVicuna
StableVicuna is the first large-scale open source chatbot trained via reinforced learning from human feedback (RHLF). StableVicuna is a further instruction fine tuned and RLHF trained version of Vicuna v0 13b, which is an instruction fine tuned LLaMA 13b model.
In order to achieve StableVicuna’s strong performance, we utilize Vicuna as the base model and follow the typical three-stage RLHF pipeline outlined by Steinnon et al. and Ouyang et al. Concretely, we further train the base Vicuna model with supervised finetuning (SFT) using a mixture of three datasets:
OpenAssistant Conversations Dataset (OASST1), a human-generated, human-annotated assistant-style conversation corpus comprising 161,443 messages distributed across 66,497 conversation trees, in 35 different languages;
GPT4All Prompt Generations, a dataset of 437,605 prompts and responses generated by GPT-3.5 Turbo;
And Alpaca, a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003.
Learn more
Tülu 3
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
Learn more
Pricing
Starting Price:
Free
Pricing Details:
Open source
Free Version:
Free Version available.
Integrations
No integrations listed.
Company Information
Stability AI
Founded: 2021
United Kingdom
stability.ai/news/stable-beluga-large-instruction-fine-tuned-models
Other Useful Business Software
BoldTrail Real Estate CRM
BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
Product Details
Platforms Supported
Cloud
On-Premises
Training
Documentation