Alternatives to SelectDB
Compare SelectDB alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to SelectDB in 2025. Compare features, ratings, user reviews, pricing, and more from SelectDB competitors and alternatives in order to make an informed decision for your business.
-
1
Teradata VantageCloud
Teradata
Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems. -
2
Google Cloud BigQuery
Google
BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process. -
3
StarTree
StarTree
StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.Starting Price: Free -
4
Amazon Redshift
Amazon
More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.Starting Price: $0.25 per hour -
5
Apache Doris
The Apache Software Foundation
Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.Starting Price: Free -
6
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
7
BigLake
Google
BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.Starting Price: $5 per TB -
8
Onehouse
Onehouse
The only fully managed cloud data lakehouse designed to ingest from all your data sources in minutes and support all your query engines at scale, for a fraction of the cost. Ingest from databases and event streams at TB-scale in near real-time, with the simplicity of fully managed pipelines. Query your data with any engine, and support all your use cases including BI, real-time analytics, and AI/ML. Cut your costs by 50% or more compared to cloud data warehouses and ETL tools with simple usage-based pricing. Deploy in minutes without engineering overhead with a fully managed, highly optimized cloud service. Unify your data in a single source of truth and eliminate the need to copy data across data warehouses and lakes. Use the right table format for the job, with omnidirectional interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Quickly configure managed pipelines for database CDC and streaming ingestion. -
9
Apache Kylin
Apache Software Foundation
Apache Kylin™ is an open source, distributed Analytical Data Warehouse for Big Data; it was designed to provide OLAP (Online Analytical Processing) capability in the big data era. By renovating the multi-dimensional cube and precalculation technology on Hadoop and Spark, Kylin is able to achieve near constant query speed regardless of the ever-growing data volume. Reducing query latency from minutes to sub-second, Kylin brings online analytics back to big data. Kylin can analyze 10+ billions of rows in less than a second. No more waiting on reports for critical decisions. Kylin connects data on Hadoop to BI tools like Tableau, PowerBI/Excel, MSTR, QlikSense, Hue and SuperSet, making the BI on Hadoop faster than ever. As an Analytical Data Warehouse, Kylin offers ANSI SQL on Hadoop/Spark and supports most ANSI SQL query functions. Kylin can support thousands of interactive queries at the same time, thanks to the low resource consumption of each query. -
10
Apache Druid
Druid
Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures. -
11
Dremio
Dremio
Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable. -
12
CelerData Cloud
CelerData
CelerData is a high-performance SQL engine built to power analytics directly on data lakehouses, eliminating the need for traditional data‐warehouse ingestion pipelines. It delivers sub-second query performance at scale, supports on-the‐fly JOINs without costly denormalization, and simplifies architecture by allowing users to run demanding workloads on open format tables. Built on the open source engine StarRocks, the platform outperforms legacy query engines like Trino, ClickHouse, and Apache Druid in latency, concurrency, and cost-efficiency. With a cloud-managed service that runs in your own VPC, you retain infrastructure control and data ownership while CelerData handles maintenance and optimization. The platform is positioned to power real-time OLAP, business intelligence, and customer-facing analytics use cases and is trusted by enterprise customers (including names such as Pinterest, Coinbase, and Fanatics) who have achieved significant latency reductions and cost savings. -
13
Amazon Data Firehose
Amazon
Easily capture, transform, and load streaming data. Create a delivery stream, select your destination, and start streaming real-time data with just a few clicks. Automatically provision and scale compute, memory, and network resources without ongoing administration. Transform raw streaming data into formats like Apache Parquet, and dynamically partition streaming data without building your own processing pipelines. Amazon Data Firehose provides the easiest way to acquire, transform, and deliver data streams within seconds to data lakes, data warehouses, and analytics services. To use Amazon Data Firehose, you set up a stream with a source, destination, and required transformations. Amazon Data Firehose continuously processes the stream, automatically scales based on the amount of data available, and delivers it within seconds. Select the source for your data stream or write data using the Firehose Direct PUT API.Starting Price: $0.075 per month -
14
Imply
Imply
Imply is a real-time analytics platform built on Apache Druid, designed to handle large-scale, high-performance OLAP (Online Analytical Processing) workloads. It offers real-time data ingestion, fast query performance, and the ability to perform complex analytical queries on massive datasets with low latency. Imply is tailored for organizations that need interactive analytics, real-time dashboards, and data-driven decision-making at scale. It provides a user-friendly interface for data exploration, along with advanced features such as multi-tenancy, fine-grained access controls, and operational insights. With its distributed architecture and scalability, Imply is well-suited for use cases in streaming data analytics, business intelligence, and real-time monitoring across industries. -
15
Qlik Compose
Qlik
Qlik Compose for Data Warehouses provides a modern approach by automating and optimizing data warehouse creation and operation. Qlik Compose automates designing the warehouse, generating ETL code, and quickly applying updates, all whilst leveraging best practices and proven design patterns. Qlik Compose for Data Warehouses dramatically reduces the time, cost and risk of BI projects, whether on-premises or in the cloud. Qlik Compose for Data Lakes automates your data pipelines to create analytics-ready data sets. By automating data ingestion, schema creation, and continual updates, organizations realize faster time-to-value from their existing data lake investments. -
16
Trino
Trino
Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.Starting Price: Free -
17
Databend
Databend
Databend is a modern, cloud-native data warehouse built to deliver high-performance, cost-efficient analytics for large-scale data processing. It is designed with an elastic architecture that scales dynamically to meet the demands of different workloads, ensuring efficient resource utilization and lower operational costs. Written in Rust, Databend offers exceptional performance through features like vectorized query execution and columnar storage, which optimize data retrieval and processing speeds. Its cloud-first design enables seamless integration with cloud platforms, and it emphasizes reliability, data consistency, and fault tolerance. Databend is an open source solution, making it a flexible and accessible choice for data teams looking to handle big data analytics in the cloud.Starting Price: Free -
18
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes. -
19
QuerySurge
RTTS
QuerySurge leverages AI to automate the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Apps/ERPs with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Hadoop & NoSQL Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise App/ERP Testing QuerySurge Features - Projects: Multi-project support - AI: automatically create datas validation tests based on data mappings - Smart Query Wizards: Create tests visually, without writing SQL - Data Quality at Speed: Automate the launch, execution, comparison & see results quickly - Test across 200+ platforms: Data Warehouses, Hadoop & NoSQL lakes, databases, flat files, XML, JSON, BI Reports - DevOps for Data & Continuous Testing: RESTful API with 60+ calls & integration with all mainstream solutions - Data Analytics & Data Intelligence: Analytics dashboard & reports -
20
Firebolt
Firebolt Analytics
Firebolt delivers extreme speed and elasticity at any scale solving your impossible data challenges. Firebolt has completely redesigned the cloud data warehouse to deliver a super fast, incredibly efficient analytics experience at any scale. An order-of-magnitude leap in performance means you can analyze much more data at higher granularity with lightning fast queries. Easily scale up or down to support any workload, amount of data and concurrent users. At Firebolt we believe that data warehouses should be much easier to use than what we’re used to. That's why we focus on turning everything that used to be complicated and labor intensive into simple tasks. Cloud data warehouse providers profit from the cloud resources you consume. We don’t! Finally, a pricing model that is fair, transparent, and allows you to scale without breaking the bank. -
21
Archon Data Store
Platform 3 Solutions
Archon Data Store is a next-generation enterprise data archiving platform designed to help organizations manage rapid data growth, reduce legacy application costs, and meet global compliance standards. Built on a modern Lakehouse architecture, Archon Data Store unifies data lakes and data warehouses to deliver secure, scalable, and analytics-ready archival storage. The platform supports on-premise, cloud, and hybrid deployments with AES-256 encryption, audit trails, metadata governance, and role-based access control. Archon Data Store offers intelligent storage tiering, high-performance querying, and seamless integration with BI tools. It enables efficient application decommissioning, cloud migration, and digital modernization while transforming archived data into a strategic asset. With Archon Data Store, organizations can ensure long-term compliance, optimize storage costs, and unlock AI-driven insights from historical data. -
22
DataLakeHouse.io
DataLakeHouse.io
DataLakeHouse.io (DLH.io) Data Sync provides replication and synchronization of operational systems (on-premise and cloud-based SaaS) data into destinations of their choosing, primarily Cloud Data Warehouses. Built for marketing teams and really any data team at any size organization, DLH.io enables business cases for building single source of truth data repositories, such as dimensional data warehouses, data vault 2.0, and other machine learning workloads. Use cases are technical and functional including: ELT, ETL, Data Warehouse, Pipeline, Analytics, AI & Machine Learning, Data, Marketing, Sales, Retail, FinTech, Restaurant, Manufacturing, Public Sector, and more. DataLakeHouse.io is on a mission to orchestrate data for every organization particularly those desiring to become data-driven, or those that are continuing their data driven strategy journey. DataLakeHouse.io (aka DLH.io) enables hundreds of companies to managed their cloud data warehousing and analytics solutions.Starting Price: $99 -
23
Electrik.Ai
Electrik.Ai
Automatically ingest marketing data into any data warehouse or cloud file storage of your choice such as BigQuery, Snowflake, Redshift, Azure SQL, AWS S3, Azure Data Lake, Google Cloud Storage with our fully managed ETL pipelines in the cloud. Our hosted marketing data warehouse integrates all your marketing data and provides ad insights, cross-channel attribution, content insights, competitor Insights, and more. Our customer data platform performs identity resolution in real-time across data sources thus enabling a unified view of the customer and their journey. Electrik.AI is a cloud-based marketing analytics software and full-service platform. Electrik.AI’s Google Analytics Hit Data Extractor enriches and extracts the un-sampled hit level data sent to Google Analytics from the website or application and periodically ships it to your desired destination database/data warehouse or file/data lake.Starting Price: $49 per month -
24
Streamkap
Streamkap
Streamkap is a streaming data platform that makes streaming as easy as batch. Stream data from database (change data capturee) or event sources to your favorite database, data warehouse or data lake. Streamkap can be deployed as a SaaS or in a bring your own cloud (BYOC) deployment.Starting Price: $600 per month -
25
Azure Synapse Analytics
Microsoft
Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs. -
26
ClickHouse
ClickHouse
ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure. -
27
WhereScape
WhereScape Software
WhereScape helps IT organizations of all sizes leverage automation to design, develop, deploy, and operate data infrastructure faster. More than 700 customers worldwide rely on WhereScape automation to eliminate hand-coding and other repetitive, time-intensive aspects of data infrastructure projects to deliver data warehouses, vaults, lakes and marts in days or weeks rather than in months or years. From data warehouses and vaults to data lakes and marts, deliver data infrastructure and big data integration fast. Quickly and easily plan, model and design all types of data infrastructure projects. Use sophisticated data discovery and profiling capabilities to bulletproof design and rapid prototyping to collaborate earlier with business users. Fast-track the development, deployment and operation of your data infrastructure projects. Dramatically reduce the delivery time, effort, cost and risk of new projects, and better position projects for future business change. -
28
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker. -
29
An industry data model from IBM acts as a blueprint with common elements based on best practices, government regulations and the complex data and analytic needs of the industry. A model can help you manage data warehouses and data lakes to gather deeper insights for better decisions. The models include warehouse design models, business terminology and business intelligence templates in a predesigned framework for an industry-specific organization to accelerate your analytics journey. Analyze and design functional requirements faster using industry-specific information infrastructures. Create and rationalize data warehouses using a consistent architecture to model changing requirements. Reduce risk and delivery better data to apps across the organization to accelerate transformation. Create enterprise-wide KPIs and address compliance, reporting and analysis requirements. Use industry data model vocabularies and templates for regulatory reporting to govern your data.
-
30
biGENIUS
biGENIUS AG
biGENIUS automates the entire lifecycle of analytical data management solutions (e.g. data warehouses, data lakes, data marts, real-time analytics, etc.) and thus providing the foundation for turning your data into business as fast and cost-efficient as possible. Save time, efforts and costs to build and maintain your data analytics solutions. Integrate new ideas and data into your data analytics solutions easily. Benefit from new technologies thanks to the metadata-driven approach. Advancing digitalization challenges traditional data warehouse (DWH) and business intelligence systems to leverage an increasing wealth of data. To accommodate today’s business decision making, analytical data management is required to integrate new data sources, support new data formats as well as technologies and deliver effective solutions faster than ever before, ideally with limited resources.Starting Price: 833CHF/seat/month -
31
Lyftrondata
Lyftrondata
Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse. -
32
Mitzu
Mitzu.io
Mitzu.io is a warehouse-native analytics platform designed for SaaS and e-commerce businesses. It enables teams to derive actionable insights directly from their data warehouses or lakes without complex data modeling or copying data into third-party systems. The platform integrates seamlessly with popular data storage solutions like Snowflake, BigQuery, Redshift, Databricks, and Trino. Mitzu's key feature is its capability to provide self-service analytics. It empowers non-technical users like product managers, marketers, and sales teams to explore data and generate insights without SQL expertise. The platform automatically generates SQL queries based on user interactions, providing real-time analytics for monitoring user behavior, feature usage, and engagement patterns. One of Mitzu's main advantages is that it works directly on raw datasets in the warehouse, eliminating the need for data duplication. Also, it works with seat-based pricing! Cheaper than the alternatives.Starting Price: $95 per month -
33
Dimodelo
Dimodelo
Stay focused on delivering valuable and impressive reporting, analytics and insights, instead of being stuck in data warehouse code. Don’t let your data warehouse become a jumble of 100’s of hard-to-maintain pipelines, notebooks, stored procedures, tables. and views etc. Dimodelo DW Studio dramatically reduces the effort required to design, build, deploy and run a data warehouse. Design, generate and deploy a data warehouse targeting Azure Synapse Analytics. Generating a best practice architecture utilizing Azure Data Lake, Polybase and Azure Synapse Analytics, Dimodelo Data Warehouse Studio delivers a high-performance, modern data warehouse in the cloud. Utilizing parallel bulk loads and in-memory tables, Dimodelo Data Warehouse Studio generates a best practice architecture that delivers a high-performance, modern data warehouse in the cloud.Starting Price: $899 per month -
34
MovingLake
MovingLake
MovingLake provides state-of-the-art real-time data connectors for infrastructure, hospitality, and e-commerce. Power your data warehouse, databases, and data lakes, as well as your microservices using the same API connectors, and get consistent data across all your systems. Make data-driven decisions faster with MovingLake! -
35
Cloudera Data Warehouse
Cloudera
Cloudera Data Warehouse is a cloud-native, self-service analytics solution that lets IT rapidly deliver query capabilities to BI analysts, enabling users to go from zero to query in minutes. It supports all data types, structured, semi-structured, unstructured, real-time, and batch, and scales cost-effectively from gigabytes to petabytes. It is fully integrated with streaming, data engineering, and AI services, and enforces a unified security, governance, and metadata framework across private, public, or hybrid cloud deployments. Each virtual warehouse (data warehouse or mart) is isolated and automatically configured and optimized, ensuring that workloads do not interfere with each other. Cloudera leverages open source engines such as Hive, Impala, Kudu, and Druid, along with tools like Hue and more, to handle diverse analytics, from dashboards and operational analytics to research and discovery over vast event or time-series data. -
36
Greenplum
Greenplum Database
Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform. -
37
Dataplex Universal Catalog
Google
Dataplex Universal Catalog is Google Cloud’s intelligent governance platform for data and AI artifacts. It centralizes discovery, management, and monitoring across data lakes, warehouses, and databases, giving teams unified access to trusted data. With Vertex AI integration, users can instantly find datasets, models, features, and related assets in one search experience. It supports semantic search, data lineage, quality checks, and profiling to improve trust and compliance. Integrated with BigQuery and BigLake, it enables end-to-end governance for both proprietary and open lakehouse environments. Dataplex Universal Catalog helps organizations democratize data access, enforce governance, and accelerate analytics and AI initiatives.Starting Price: $0.060 per hour -
38
IBM watsonx.data
IBM
Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more. -
39
PuppyGraph
PuppyGraph
PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.Starting Price: Free -
40
Materialize
Materialize
Materialize is a reactive database that delivers incremental view updates. We help developers easily build with streaming data using standard SQL. Materialize can connect to many different external sources of data without pre-processing. Connect directly to streaming sources like Kafka, Postgres databases, CDC, or historical sources of data like files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are maintained and continually updated as new data streams in. With incrementally-updated views, developers can easily build data visualizations or real-time applications. Building with streaming data can be as simple as writing a few lines of SQL.Starting Price: $0.98 per hour -
41
Thousands of customers use Amazon Managed Service for Apache Flink to run stream processing applications. With Amazon Managed Service for Apache Flink, you can transform and analyze streaming data in real-time using Apache Flink and integrate applications with other AWS services. There are no servers and clusters to manage, and there is no computing and storage infrastructure to set up. You pay only for the resources you use. Build and run Apache Flink applications, without setting up infrastructure and managing resources and clusters. Process gigabytes of data per second with subsecond latencies and respond to events in real-time. Deploy highly available and durable applications with Multi-AZ deployments and APIs for application lifecycle management. Develop applications that transform and deliver data to Amazon Simple Storage Service (Amazon S3), Amazon OpenSearch Service, and more.Starting Price: $0.11 per hour
-
42
Apache RocketMQ
Apache Software Foundation
Apache RocketMQ™ is a unified messaging engine, lightweight data processing platform. Financial-grade stability, widely used in transaction core links. Seamless connection to surrounding ecosystems such as microservices, real-time computing, and data lakes. Configurable, low-code way to integrate data, can establish connection with any system, can be used to build streaming ETL, data pipeline, data lake, etc. Stream computing engine that provides light weight, high scalability, high performance and rich functions. Rich message type support and message governance methods to meet serverless application scenarios with message granularity load balancing. Apache RocketMQ has been widely adopted by many enterprise developers and cloud vendors due to its simple architecture, rich business functions, and strong scalability. -
43
The Ocient Hyperscale Data Warehouse transforms and loads data in seconds, enables organizations to store and analyze more data, and executes queries on hyperscale datasets up to 50x faster. To deliver next-generation data analytics, Ocient completely reimagined its data warehouse design to deliver rapid, continuous analysis of complex, hyperscale datasets. The Ocient Hyperscale Data Warehouse brings storage adjacent to compute to maximize performance on industry-standard hardware, enables users to transform, stream or load data directly, and returns previously infeasible queries in seconds. Optimized for industry standard hardware, Ocient has benchmarked query performance levels up to 50x better than competing products. The Ocient Hyperscale Data Warehouse empowers next-generation data analytics solutions in key areas where existing solutions fall short.
-
44
Apache Pinot
Apache Corporation
Pinot is designed to answer OLAP queries with low latency on immutable data. Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index. Joins are currently not supported, but this problem can be overcome by using Trino or PrestoDB for querying. SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data. Consist of of both offline and real-time table. Use real-time table only to cover segments for which offline data may not be available yet. Detect the right anomalies by customizing anomaly detect flow and notification flow. -
45
Apache Hive
Apache Software Foundation
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API. -
46
Yellowbrick
Yellowbrick Data
Data Warehousing Without Limits While legacy platforms like Netezza struggle to stay relevant, and cloud-only options like Snowflake suffer from a reliance on VMs running on commodity hardware, Yellowbrick shatters ceilings on price/performance and deployment flexibility across on-premises and cloud environments. Pricing & Configurations. Performance Security. Get 100X Performance. Let thousands of users run ad hoc queries 10x-100x faster than any legacy or cloud-only data warehouse, on PBs of data. Plus, query real-time and at-rest data simultaneously. Deploy Anywhere Deploy applications everywhere — on-premises, in multiple public clouds, or both with the same data and performance everywhere (and no data egress charges). Save Millions Pay a fraction of what other options charge you via fixed-cost subscriptions for budget certainty, the more queries you run, the lower the cost per query. -
47
OpenText Analytics Database is a high-performance, scalable analytics platform that enables organizations to analyze massive data sets quickly and cost-effectively. It supports real-time analytics and in-database machine learning to deliver actionable business insights. The platform can be deployed flexibly across hybrid, multi-cloud, and on-premises environments to optimize infrastructure and reduce total cost of ownership. Its massively parallel processing (MPP) architecture handles complex queries efficiently, regardless of data size. OpenText Analytics Database also features compatibility with data lakehouse architectures, supporting formats like Parquet and ORC. With built-in machine learning and broad language support, it empowers users from SQL experts to Python developers to derive predictive insights.
-
48
Delta Lake
Delta Lake
Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments. -
49
Oxla
Oxla
Purpose-built for compute, memory, and storage efficiency, Oxla is a self-hosted data warehouse optimized for large-scale, low-latency analytics with robust time-series support. Cloud data warehouses aren’t for everyone. At scale, long-term cloud compute costs outweigh short-term infrastructure savings, and regulated industries require full control over data beyond VPC and BYOC deployments. Oxla outperforms both legacy and cloud warehouses through efficiency, enabling scale for growing datasets with predictable costs, on-prem or in any cloud. Easily deploy, run, and maintain Oxla with Docker and YAML to power diverse workloads in a single, self-hosted data warehouse.Starting Price: $50 per CPU core / monthly -
50
Apache Flume
Apache Software Foundation
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault-tolerant with tunable reliability mechanisms and many failovers and recovery mechanisms. It uses a simple extensible data model that allows for online analytic applications. The Apache Flume team is pleased to announce the release of Flume 1.8.0. Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of streaming event data.