IBM Watson Machine Learning Accelerator
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
Learn more
Dataloop AI
Manage unstructured data and pipelines to develop AI solutions at amazing speed.
Enterprise-grade data platform for vision AI. Dataloop is a one-stop shop for building and deploying powerful computer vision pipelines data labeling, automating data ops, customizing production pipelines and weaving the human-in-the-loop for data validation. Our vision is to make machine learning-based systems accessible, affordable and scalable for all.
Explore and analyze vast quantities of unstructured data from diverse sources. Rely on automated preprocessing and embeddings to identify similarities and find the data you need. Curate, version, clean, and route your data to wherever it’s needed to create exceptional AI applications.
Learn more
AWS EC2 Trn3 Instances
Amazon EC2 Trn3 UltraServers are AWS’s newest accelerated computing instances, powered by the in-house Trainium3 AI chips and engineered specifically for high-performance deep-learning training and inference workloads. These UltraServers are offered in two configurations, a “Gen1” with 64 Trainium3 chips and a “Gen2” with up to 144 Trainium3 chips per UltraServer. The Gen2 configuration delivers up to 362 petaFLOPS of dense MXFP8 compute, 20 TB of HBM memory, and a staggering 706 TB/s of aggregate memory bandwidth, making it one of the highest-throughput AI compute platforms available. Interconnects between chips are handled by a new “NeuronSwitch-v1” fabric to support all-to-all communication patterns, which are especially important for large models, mixture-of-experts architectures, or large-scale distributed training.
Learn more
Amazon EC2 Trn1 Instances
Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
Learn more