Alternatives to Reka
Compare Reka alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Reka in 2026. Compare features, ratings, user reviews, pricing, and more from Reka competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
Mistral AI
Mistral AI
Mistral AI is a pioneering artificial intelligence startup specializing in open-source generative AI. The company offers a range of customizable, enterprise-grade AI solutions deployable across various platforms, including on-premises, cloud, edge, and devices. Flagship products include "Le Chat," a multilingual AI assistant designed to enhance productivity in both personal and professional contexts, and "La Plateforme," a developer platform that enables the creation and deployment of AI-powered applications. Committed to transparency and innovation, Mistral AI positions itself as a leading independent AI lab, contributing significantly to open-source AI and policy development.Starting Price: Free -
3
Gemini
Google
Gemini is Google’s advanced AI assistant designed to help users think, create, learn, and complete tasks with a new level of intelligence. Powered by Google’s most capable models, including Gemini 3, it enables users to ask complex questions, generate content, analyze information, and explore ideas through natural conversation. Gemini can create images, videos, summaries, study plans, and first drafts while also providing feedback on uploaded files and written work. The platform is grounded in Google Search, allowing it to deliver accurate, up-to-date information and support deep follow-up questions. Gemini connects seamlessly with Google apps like Gmail, Docs, Calendar, Maps, YouTube, and Photos to help users complete tasks without switching tools. Features such as Gemini Live, Deep Research, and Gems enhance brainstorming, research, and personalized workflows. Available through flexible free and paid plans, Gemini supports everyday users, students, and professionals across devices.Starting Price: Free -
4
AI21 Studio
AI21 Studio
AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.Starting Price: $29 per month -
5
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
6
Azure OpenAI Service
Microsoft
Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.Starting Price: $0.0004 per 1000 tokens -
7
Reka Flash 3
Reka
Reka Flash 3 is a 21-billion-parameter multimodal AI model developed by Reka AI, designed to excel in general chat, coding, instruction following, and function calling. It processes and reasons with text, images, video, and audio inputs, offering a compact, general-purpose solution for various applications. Trained from scratch on diverse datasets, including publicly accessible and synthetic data, Reka Flash 3 underwent instruction tuning on curated, high-quality data to optimize performance. The final training stage involved reinforcement learning using REINFORCE Leave One-Out (RLOO) with both model-based and rule-based rewards, enhancing its reasoning capabilities. With a context length of 32,000 tokens, Reka Flash 3 performs competitively with proprietary models like OpenAI's o1-mini, making it suitable for low-latency or on-device deployments. The model's full precision requires 39GB (fp16), but it can be compressed to as small as 11GB using 4-bit quantization. -
8
Stable Beluga
Stability AI
Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.Starting Price: Free -
9
Olmo 3
Ai2
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.Starting Price: Free -
10
DeepScaleR
Agentica Project
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.Starting Price: Free -
11
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
12
Open R1
Open R1
Open R1 is a community-driven, open-source initiative aimed at replicating the advanced AI capabilities of DeepSeek-R1 through transparent methodologies. You can try Open R1 AI model or DeepSeek R1 free online chat on Open R1. The project offers a comprehensive implementation of DeepSeek-R1's reasoning-optimized training pipeline, including tools for GRPO training, SFT fine-tuning, and synthetic data generation, all under the MIT license. While the original training data remains proprietary, Open R1 provides the complete toolchain for users to develop and fine-tune their own models.Starting Price: Free -
13
Sky-T1
NovaSky
Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.Starting Price: Free -
14
Gemini Enterprise
Google
Gemini Enterprise is a comprehensive AI platform built by Google Cloud designed to bring the full power of Google’s advanced AI models, agent-creation tools, and enterprise-grade data access into everyday workflows. The solution offers a unified chat interface that lets employees interact with internal documents, applications, data sources, and custom AI agents. At its core, Gemini Enterprise comprises six key components: the Gemini family of large multimodal models, an agent orchestration workbench (formerly Google Agentspace), pre-built starter agents, robust data-integration connectors to business systems, extensive security and governance controls, and a partner ecosystem for tailored integrations. It is engineered to scale across departments and enterprises, enabling users to build no-code or low-code agents that automate tasks, such as research synthesis, customer support response, code assist, contract analysis, and more, while operating within corporate compliance standards.Starting Price: $21 per month -
15
Mistral Large 3
Mistral AI
Mistral Large 3 is a next-generation, open multimodal AI model built with a powerful sparse Mixture-of-Experts architecture featuring 41B active parameters out of 675B total. Designed from scratch on NVIDIA H200 GPUs, it delivers frontier-level reasoning, multilingual performance, and advanced image understanding while remaining fully open-weight under the Apache 2.0 license. The model achieves top-tier results on modern instruction benchmarks, positioning it among the strongest permissively licensed foundation models available today. With native support across vLLM, TensorRT-LLM, and major cloud providers, Mistral Large 3 offers exceptional accessibility and performance efficiency. Its design enables enterprise-grade customization, letting teams fine-tune or adapt the model for domain-specific workflows and proprietary applications. Mistral Large 3 represents a major advancement in open AI, offering frontier intelligence without sacrificing transparency or control.Starting Price: Free -
16
ChatGLM
Zhipu AI
ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. Combined with model quantization technology, users can deploy locally on consumer-grade graphics cards (only 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese Q&A and dialogue. After about 1T identifiers of Chinese and English bilingual training, supplemented by supervision and fine-tuning, feedback self-help, human feedback reinforcement learning and other technologies, ChatGLM-6B with 6.2 billion parameters has been able to generate answers that are quite in line with human preferences.Starting Price: Free -
17
Phi-4-reasoning
Microsoft
Phi-4-reasoning is a 14-billion parameter transformer-based language model optimized for complex reasoning tasks, including math, coding, algorithmic problem solving, and planning. Trained via supervised fine-tuning of Phi-4 on carefully curated "teachable" prompts and reasoning demonstrations generated using o3-mini, it generates detailed reasoning chains that effectively leverage inference-time compute. Phi-4-reasoning incorporates outcome-based reinforcement learning to produce longer reasoning traces. It outperforms significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B and approaches the performance levels of the full DeepSeek-R1 model across a wide range of reasoning tasks. Phi-4-reasoning is designed for environments with constrained computing or latency. Fine-tuned with synthetic data generated by DeepSeek-R1, it provides high-quality, step-by-step problem solving. -
18
Hermes 3
Nous Research
Experiment, and push the boundaries of individual alignment, artificial consciousness, open-source software, and decentralization, in ways that monolithic companies and governments are too afraid to try. Hermes 3 contains advanced long-term context retention and multi-turn conversation capability, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Our training data aggressively encourages the model to follow the system and instruction prompts exactly and in an adaptive manner. Hermes 3 was created by fine-tuning Llama 3.1 8B, 70B, and 405B, and training on a dataset of primarily synthetically generated responses. The model boasts comparable and superior performance to Llama 3.1 while unlocking deeper capabilities in reasoning and creativity. Hermes 3 is a series of instruct and tool-use models with strong reasoning and creative abilities.Starting Price: Free -
19
Ferret
Apple
An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.Starting Price: Free -
20
Yi-Lightning
Yi-Lightning
Yi-Lightning, developed by 01.AI under the leadership of Kai-Fu Lee, represents the latest advancement in large language models with a focus on high performance and cost-efficiency. It boasts a maximum context length of 16K tokens and is priced at $0.14 per million tokens for both input and output, making it remarkably competitive. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, incorporating fine-grained expert segmentation and advanced routing strategies, which contribute to its efficiency in training and inference. This model has excelled in various domains, achieving top rankings in categories like Chinese, math, coding, and hard prompts on the chatbot arena, where it secured the 6th position overall and 9th in style control. Its development included comprehensive pre-training, supervised fine-tuning, and reinforcement learning from human feedback, ensuring both performance and safety, with optimizations in memory usage and inference speed. -
21
DeepSeek-V3
DeepSeek
DeepSeek-V3 is a state-of-the-art AI model designed to deliver unparalleled performance in natural language understanding, advanced reasoning, and decision-making tasks. Leveraging next-generation neural architectures, it integrates extensive datasets and fine-tuned algorithms to tackle complex challenges across diverse domains such as research, development, business intelligence, and automation. With a focus on scalability and efficiency, DeepSeek-V3 provides developers and enterprises with cutting-edge tools to accelerate innovation and achieve transformative outcomes.Starting Price: Free -
22
Qwen2.5-Max
Alibaba
Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.Starting Price: Free -
23
Llama 3.3
Meta
Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.Starting Price: Free -
24
Qwen
Alibaba
Qwen is a powerful, free AI assistant built on the advanced Qwen model series, designed to help anyone with creativity, research, problem-solving, and everyday tasks. While Qwen Chat is the main interface for most users, Qwen itself powers a broad range of intelligent capabilities including image generation, deep research, website creation, advanced reasoning, and context-aware search. Its multimodal intelligence enables Qwen to understand and process text, images, audio, and video simultaneously for richer insights. Qwen is available on web, desktop, and mobile, ensuring seamless access across all devices. For developers, the Qwen API provides OpenAI-compatible endpoints, making integration simple and allowing Qwen’s intelligence to power apps, services, and automation. Whether you're chatting through Qwen Chat or building with the Qwen API, Qwen delivers fast, flexible, and highly capable AI support.Starting Price: Free -
25
Amazon Nova Lite
Amazon
Amazon Nova Lite is a cost-efficient, multimodal AI model designed for rapid processing of image, video, and text inputs. It delivers impressive performance at an affordable price, making it ideal for interactive, high-volume applications where cost is a key consideration. With support for fine-tuning across text, image, and video inputs, Nova Lite excels in a variety of tasks that require fast, accurate responses, such as content generation and real-time analytics. -
26
Orpheus TTS
Canopy Labs
Canopy Labs has introduced Orpheus, a family of state-of-the-art speech large language models (LLMs) designed for human-level speech generation. These models are built on the Llama-3 architecture and are trained on over 100,000 hours of English speech data, enabling them to produce natural intonation, emotion, and rhythm that surpasses current state-of-the-art closed source models. Orpheus supports zero-shot voice cloning, allowing users to replicate voices without prior fine-tuning, and offers guided emotion and intonation control through simple tags. The models achieve low latency, with approximately 200ms streaming latency for real-time applications, reducible to around 100ms with input streaming. Canopy Labs has released both pre-trained and fine-tuned 3B-parameter models under the permissive Apache 2.0 license, with plans to release smaller models of 1B, 400M, and 150M parameters for use on resource-constrained devices. -
27
Upstage AI
Upstage.ai
Upstage AI builds powerful large language models and document processing engines designed to transform workflows across industries like insurance, healthcare, and finance. Their enterprise-grade AI technology delivers high accuracy and performance, enabling businesses to automate complex tasks such as claims processing, underwriting, and clinical document analysis. Key products include Solar Pro 2, a fast and grounded enterprise language model, Document Parse for converting PDFs and scans into machine-readable text, and Information Extract for precise data extraction from contracts and invoices. Upstage’s AI solutions help companies save time and reduce manual work by providing instant, accurate answers from large document sets. The platform supports flexible deployment options including cloud, on-premises, and hybrid, meeting strict compliance requirements. Trusted by global clients, Upstage continues to advance AI innovation with top conference publications and industry awards.Starting Price: $0.5 per 1M tokens -
28
Aya
Cohere AI
Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date. -
29
Kimi K2
Moonshot AI
Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.Starting Price: Free -
30
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM is a collaborative initiative among Europe's leading AI companies and research institutions to develop a series of open-source foundation models for transparent AI in Europe. The project emphasizes transparency by openly sharing data, documentation, training, testing code, and evaluation metrics, fostering community involvement. It ensures compliance with EU regulations, aiming to provide performant large language models that align with European standards. A key focus is on linguistic and cultural diversity, extending multilingual capabilities to encompass all EU official languages and beyond. The initiative seeks to enhance access to foundational models ready for fine-tuning across various applications, expand evaluation results in multiple languages, and increase the availability of training datasets and benchmarks. Transparency is maintained throughout the training processes by sharing tools, methodologies, and intermediate results. -
31
Simplismart
Simplismart
Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go. -
32
ALBERT
Google
ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining. -
33
Llama 3.1
Meta
The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.Starting Price: Free -
34
Amazon Titan
Amazon
Amazon Titan is a series of advanced foundation models (FMs) from AWS, designed to enhance generative AI applications with high performance and flexibility. Built on AWS's 25 years of AI and machine learning experience, Titan models support a range of use cases such as text generation, summarization, semantic search, and image generation. Titan models are optimized for responsible AI use, incorporating built-in safety features and fine-tuning capabilities. They can be customized with your own data through Retrieval Augmented Generation (RAG) to improve accuracy and relevance, making them ideal for both general-purpose and specialized AI tasks. -
35
Ministral 3
Mistral AI
Mistral 3 is the latest generation of open-weight AI models from Mistral AI, offering a full family of models, from small, edge-optimized versions to a flagship, large-scale multimodal model. The lineup includes three compact “Ministral 3” models (3B, 8B, and 14B parameters) designed for efficiency and deployment on constrained hardware (even laptops, drones, or edge devices), plus the powerful “Mistral Large 3,” a sparse mixture-of-experts model with 675 billion total parameters (41 billion active). The models support multimodal and multilingual tasks, not only text, but also image understanding, and have demonstrated best-in-class performance on general prompts, multilingual conversations, and multimodal inputs. The base and instruction-fine-tuned versions are released under the Apache 2.0 license, enabling broad customization and integration in enterprise and open source projects.Starting Price: Free -
36
NLP Cloud
NLP Cloud
Fast and accurate AI models suited for production. Highly-available inference API leveraging the most advanced NVIDIA GPUs. We selected the best open-source natural language processing (NLP) models from the community and deployed them for you. Fine-tune your own models - including GPT-J - or upload your in-house custom models, and deploy them easily to production. Upload or Train/Fine-Tune your own AI models - including GPT-J - from your dashboard, and use them straight away in production without worrying about deployment considerations like RAM usage, high-availability, scalability... You can upload and deploy as many models as you want to production.Starting Price: $29 per month -
37
Cohere
Cohere AI
Cohere is an enterprise AI platform that enables developers and businesses to build powerful language-based applications. Specializing in large language models (LLMs), Cohere provides solutions for text generation, summarization, and semantic search. Their model offerings include the Command family for high-performance language tasks and Aya Expanse for multilingual applications across 23 languages. Focused on security and customization, Cohere allows flexible deployment across major cloud providers, private cloud environments, or on-premises setups to meet diverse enterprise needs. The company collaborates with industry leaders like Oracle and Salesforce to integrate generative AI into business applications, improving automation and customer engagement. Additionally, Cohere For AI, their research lab, advances machine learning through open-source projects and a global research community.Starting Price: Free -
38
Gemini 1.5 Pro
Google
The Gemini 1.5 Pro AI model is a state-of-the-art language model designed to deliver highly accurate, context-aware, and human-like responses across a variety of applications. Built with cutting-edge neural architecture, it excels in natural language understanding, generation, and reasoning tasks. The model is fine-tuned for versatility, supporting tasks like content creation, code generation, data analysis, and complex problem-solving. Its advanced algorithms ensure nuanced comprehension, enabling it to adapt to different domains and conversational styles seamlessly. With a focus on scalability and efficiency, the Gemini 1.5 Pro is optimized for both small-scale implementations and enterprise-level integrations, making it a powerful tool for enhancing productivity and innovation. -
39
Palmyra LLM
Writer
Palmyra is a suite of Large Language Models (LLMs) engineered for precise, dependable performance in enterprise applications. These models excel in tasks such as question-answering, image analysis, and support for over 30 languages, with fine-tuning available for industries like healthcare and finance. Notably, Palmyra models have achieved top rankings in benchmarks like Stanford HELM and PubMedQA, and Palmyra-Fin is the first model to pass the CFA Level III exam. Writer ensures data privacy by not using client data to train or modify their models, adopting a zero data retention policy. The Palmyra family includes specialized models such as Palmyra X 004, featuring tool-calling capabilities; Palmyra Med, tailored for healthcare; Palmyra Fin, designed for finance; and Palmyra Vision, which offers advanced image and video processing. These models are available through Writer's full-stack generative AI platform, which integrates graph-based Retrieval Augmented Generation (RAG).Starting Price: $18 per month -
40
Tune AI
NimbleBox
Leverage the power of custom models to build your competitive advantage. With our enterprise Gen AI stack, go beyond your imagination and offload manual tasks to powerful assistants instantly – the sky is the limit. For enterprises where data security is paramount, fine-tune and deploy generative AI models on your own cloud, securely. -
41
Dolly
Databricks
Dolly is a cheap-to-build LLM that exhibits a surprising degree of the instruction following capabilities exhibited by ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly works by taking an existing open source 6 billion parameter model from EleutherAI and modifying it ever so slightly to elicit instruction following capabilities such as brainstorming and text generation not present in the original model, using data from Alpaca.Starting Price: Free -
42
ERNIE 3.0 Titan
Baidu
Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, We design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts. -
43
PygmalionAI
PygmalionAI
PygmalionAI is a community dedicated to creating open-source projects based on EleutherAI's GPT-J 6B and Meta's LLaMA models. In simple terms, Pygmalion makes AI fine-tuned for chatting and roleplaying purposes. The current actively supported Pygmalion AI model is the 7B variant, based on Meta AI's LLaMA model. With only 18GB (or less) VRAM required, Pygmalion offers better chat capability than much larger language models with relatively minimal resources. Our curated dataset of high-quality roleplaying data ensures that your bot will be the optimal RP partner. Both the model weights and the code used to train it are completely open-source, and you can modify/re-distribute it for whatever purpose you want. Language models, including Pygmalion, generally run on GPUs since they need access to fast memory and massive processing power in order to output coherent text at an acceptable speed.Starting Price: Free -
44
GPT4All
Nomic AI
GPT4All is an ecosystem to train and deploy powerful and customized large language models that run locally on consumer-grade CPUs. The goal is simple - be the best instruction-tuned assistant-style language model that any person or enterprise can freely use, distribute and build on. A GPT4All model is a 3GB - 8GB file that you can download and plug into the GPT4All open-source ecosystem software. Nomic AI supports and maintains this software ecosystem to enforce quality and security alongside spearheading the effort to allow any person or enterprise to easily train and deploy their own on-edge large language models. Data is one the most important ingredients to successfully building a powerful, general-purpose large language model. The GPT4All community has built the GPT4All open source data lake as a staging ground for contributing instruction and assistant tuning data for future GPT4All model trains.Starting Price: Free -
45
Replicate
Replicate
Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.Starting Price: Free -
46
LongLLaMA
LongLLaMA
This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.Starting Price: Free -
47
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model. -
48
Defense Llama
Scale AI
Scale AI is proud to announce Defense Llama, the Large Language Model (LLM) built on Meta’s Llama 3 that is specifically customized and fine-tuned to support American national security missions. Defense Llama, available exclusively in controlled U.S. government environments within Scale Donovan, empowers our service members and national security professionals to apply the power of generative AI to their unique use cases, such as planning military or intelligence operations and understanding adversary vulnerabilities. Defense Llama was trained on a vast dataset, including military doctrine, international humanitarian law, and relevant policies designed to align with the Department of Defense (DoD) guidelines for armed conflict as well as the DoD’s Ethical Principles for Artificial Intelligence. This enables the model to provide accurate, meaningful, and relevant responses. Scale is proud to enable U.S. national security personnel to use generative AI safely and securely for defense. -
49
Together AI
Together AI
Together AI provides an AI-native cloud platform built to accelerate training, fine-tuning, and inference on high-performance GPU clusters. Engineered for massive scale, the platform supports workloads that process trillions of tokens without performance drops. Together AI delivers industry-leading cost efficiency by optimizing hardware, scheduling, and inference techniques, lowering total cost of ownership for demanding AI workloads. With deep research expertise, the company brings cutting-edge models, hardware, and runtime innovations—like ATLAS runtime-learning accelerators—directly into production environments. Its full-stack ecosystem includes a model library, inference APIs, fine-tuning capabilities, pre-training support, and instant GPU clusters. Designed for AI-native teams, Together AI helps organizations build and deploy advanced applications faster and more affordably.Starting Price: $0.0001 per 1k tokens -
50
LLaVA
LLaVA
LLaVA (Large Language-and-Vision Assistant) is an innovative multimodal model that integrates a vision encoder with the Vicuna language model to facilitate comprehensive visual and language understanding. Through end-to-end training, LLaVA exhibits impressive chat capabilities, emulating the multimodal functionalities of models like GPT-4. Notably, LLaVA-1.5 has achieved state-of-the-art performance across 11 benchmarks, utilizing publicly available data and completing training in approximately one day on a single 8-A100 node, surpassing methods that rely on billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been instrumental in training LLaVA to perform a wide array of visual and language tasks effectively.Starting Price: Free