Alternatives to Rasgo
Compare Rasgo alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Rasgo in 2024. Compare features, ratings, user reviews, pricing, and more from Rasgo competitors and alternatives in order to make an informed decision for your business.
-
1
Xilinx
Xilinx
The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications. -
2
Butler
Butler
Butler is a platform that helps developers turn AI into easy to use APIs. Create, train, and deploy AI Models in minutes. No AI experience required. Use Butler’s easy-to-use user interface to build a comprehensive labeled data set. Forget about painful labeling exercises. Butler automatically chooses and trains the correct ML model for your use case. No need to spend hours analyzing which models perform the best. With a library of features to customize, Butler enables you to tune your model to your exact requirements. Stop spending time wrestling with rigid predefined models or building homegrown custom solutions. Parse key data fields and tables from any unstructured document or image. Free your users from manual data entry with lightning fast document parsing APIs. Extract information from free form text like names, places, terms and any other custom data. Make your product understand your users the same way you do. -
3
MindsDB
MindsDB
Open-Source AI layer for databases. Boost efficiency of your projects by bringing Machine Learning capabilities directly to the data domain. MindsDB provides a simple way to create, train and test ML models and then publish them as virtual AI-Tables into databases. Integrate seamlessly with most of databases on the market. Use SQL queries for all manipulation with ML models. Improve model training speed with GPU without affecting your database performance. Get insights on why the ML model reached its conclusions and what affects prediction confidence. Visual tools that allows you to investigate model performance. SQL and Python queries that return explainability insights in a code. What-if analysis to evaluate confidence based on different inputs. Automate the process of applying machine learning with the state-of-the-art Lightwood AutoML library. Build custom solutions with Machine Learning in your favorite programming language. -
4
Ensemble Dark Matter
Ensemble
Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain. -
5
NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.Starting Price: Free
-
6
Keepsake
Replicate
Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.Starting Price: Free -
7
Towhee
Towhee
You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.Starting Price: Free -
8
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model. -
9
Robust Intelligence
Robust Intelligence
The Robust Intelligence Platform integrates seamlessly into your ML lifecycle to eliminate model failures. The platform detects your model’s vulnerabilities, prevents aberrant data from entering your AI system, and detects statistical data issues like drift. At the core of our test-based approach is a single test. Each test measures your model’s robustness to a specific type of production model failure. Stress Testing runs hundreds of these tests to measure model production readiness. The results of these tests are used to auto-configure a custom AI Firewall that protects the model against the specific forms of failure to which a given model is susceptible. Finally, Continuous Testing runs these tests during production, providing automated root cause analysis informed by the underlying cause of any single test failure. Using all three elements of the Robust Intelligence platform together helps ensure ML Integrity. -
10
Mystic
Mystic
With Mystic you can deploy ML in your own Azure/AWS/GCP account or deploy in our shared GPU cluster. All Mystic features are directly in your own cloud. In a few simple steps, you get the most cost-effective and scalable way of running ML inference. Our shared cluster of GPUs is used by 100s of users simultaneously. Low cost but performance will vary depending on real-time GPU availability. Good AI products need good models and infrastructure; we solve the infrastructure part. A fully managed Kubernetes platform that runs in your own cloud. Open-source Python library and API to simplify your entire AI workflow. You get a high-performance platform to serve your AI models. Mystic will automatically scale up and down GPUs depending on the number of API calls your models receive. You can easily view, edit, and monitor your infrastructure from your Mystic dashboard, CLI, and APIs.Starting Price: Free -
11
WhyLabs
WhyLabs
Enable observability to detect data and ML issues faster, deliver continuous improvements, and avoid costly incidents. Start with reliable data. Continuously monitor any data-in-motion for data quality issues. Pinpoint data and model drift. Identify training-serving skew and proactively retrain. Detect model accuracy degradation by continuously monitoring key performance metrics. Identify risky behavior in generative AI applications and prevent data leakage. Protect your generative AI applications are safe from malicious actions. Improve AI applications through user feedback, monitoring, and cross-team collaboration. Integrate in minutes with purpose-built agents that analyze raw data without moving or duplicating it, ensuring privacy and security. Onboard the WhyLabs SaaS Platform for any use cases using the proprietary privacy-preserving integration. Security approved for healthcare and banks. -
12
MyDataModels TADA
MyDataModels
Deploy best-in-class predictive analytics models TADA by MyDataModels helps professionals use their Small Data to enhance their business with a light, easy-to-set-up tool. TADA provides a predictive modeling solution leading to fast and usable results. Shift from days to a few hours into building ad hoc effective models with our 40% reduced time automated data preparation. Get outcomes from your data without programming or machine learning skills. Optimize your time with explainable and understandable models made of easy-to-read formulas. Turn your data into insights in a snap on any platform and create effective automated models. TADA removes the complexity of building predictive models by automating the generative machine learning process – data in, model out. Build and run machine learning models on any devices and platforms through our powerful web-based pre-processing features.Starting Price: $5347.46 per year -
13
Dataiku DSS
Dataiku
Bring data analysts, engineers, and scientists together. Enable self-service analytics and operationalize machine learning. Get results today and build for tomorrow. Dataiku DSS is the collaborative data science software platform for teams of data scientists, data analysts, and engineers to explore, prototype, build, and deliver their own data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) or a customizable drag-and-drop visual interface at any step of the predictive dataflow prototyping process – from wrangling to analysis to modeling. Profile the data visually at every step of the analysis. Interactively explore and chart your data using 25+ built-in charts. Prepare, enrich, blend, and clean data using 80+ built-in functions. Leverage Machine Learning technologies (Scikit-Learn, MLlib, TensorFlow, Keras, etc.) in a visual UI. Build & optimize models in Python or R and integrate any external ML library through code APIs. -
14
TAZI
TAZI
TAZI is highly focused on business outcome and ROI of AI predictions. TAZI can be used by any business user, whether it is a business intelligence analyst or a C-level executive. TAZI Profiler to immediately understand and gain insights on your ML-Ready data sources. TAZI Business Dashboards and Explanation model to understand and validate the AI models for production. Detect and predict different subsets of your operations for ROI optimization. Empowers you to check data quality and important statistics by automating the manual work usually involved in data discovery and preparation. Makes feature engineering easier with recommendations even for composite features and data transformations. -
15
Invert
Invert
Invert offers a complete suite for collecting, cleaning, and contextualizing data, ensuring every analysis and insight is based on reliable, organized data. Invert collects and standardizes all your bioprocess data, with powerful, built-in products for analysis, machine learning, and modeling. Clean, standardized data is just the beginning. Explore our suite of data management, analysis, and modeling tools. Replace manual workflows in spreadsheets or statistical software. Calculate anything using powerful statistical features. Automatically generate reports based on recent runs. Add interactive plots, calculations, and comments and share with internal or external collaborators. Streamline planning, coordination, and execution of experiments. Easily find the data you need, and deep dive into any analysis you'd like. From integration to analysis to modeling, find all the tools you need to manage and make sense of your data. -
16
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
17
3LC
3LC
Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility. -
18
Superb AI
Superb AI
Superb AI provides a new generation machine learning data platform to AI teams so that they can build better AI in less time. The Superb AI Suite is an enterprise SaaS platform built to help ML engineers, product teams, researchers and data annotators create efficient training data workflows, saving time and money. Majority of ML teams spend more than 50% of their time managing training datasets Superb AI can help. On average, our customers have reduced the time it takes to start training models by 80%. Fully managed workforce, powerful labeling tools, training data quality control, pre-trained model predictions, advanced auto-labeling, filter and search your datasets, data source integration, robust developer tools, ML workflow integrations, and much more. Training data management just got easier with Superb AI. Superb AI offers enterprise-level features for every layer in an ML organization. -
19
Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
-
20
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
-
21
Aporia
Aporia
Create customized monitors for your machine learning models with our magically-simple monitor builder, and get alerts for issues like concept drift, model performance degradation, bias and more. Aporia integrates seamlessly with any ML infrastructure. Whether it’s a FastAPI server on top of Kubernetes, an open-source deployment tool like MLFlow or a machine learning platform like AWS Sagemaker. Zoom into specific data segments to track model behavior. Identify unexpected bias, underperformance, drifting features and data integrity issues. When there are issues with your ML models in production, you want to have the right tools to get to the root cause as quickly as possible. Go beyond model monitoring with our investigation toolbox to take a deep dive into model performance, data segments, data stats or distribution. -
22
Ray
Anyscale
Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.Starting Price: Free -
23
Valohai
Valohai
Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.Starting Price: $560 per month -
24
Arthur AI
Arthur
Track model performance to detect and react to data drift, improving model accuracy for better business outcomes. Build trust, ensure compliance, and drive more actionable ML outcomes with Arthur’s explainability and transparency APIs. Proactively monitor for bias, track model outcomes against custom bias metrics, and improve the fairness of your models. See how each model treats different population groups, proactively identify bias, and use Arthur's proprietary bias mitigation techniques. Arthur scales up and down to ingest up to 1MM transactions per second and deliver insights quickly. Actions can only be performed by authorized users. Individual teams/departments can have isolated environments with specific access control policies. Data is immutable once ingested, which prevents manipulation of metrics/insights. -
25
Roboflow
Roboflow
Roboflow has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of data labeling, model training, or model deployment, Roboflow gives you building blocks to bring custom computer vision solutions to your business.Starting Price: $250/month -
26
Kolena
Kolena
We’ve included some common examples, but the list is far from exhaustive. Our solution engineering team will work with you to customize Kolena for your workflows and your business metrics. Aggregate metrics don't tell the full story — unexpected model behavior in production is the norm. Current testing processes are manual, error-prone, and unrepeatable. Models are evaluated on arbitrary statistical metrics that align imperfectly with product objectives. Tracking model improvement over time as the data evolves is difficult and techniques sufficient in a research environment don't meet the demands of production. -
27
Striveworks Chariot
Striveworks
Make AI a trusted part of your business. Build better, deploy faster, and audit easily with the flexibility of a cloud-native platform and the power to deploy anywhere. Easily import models and search cataloged models from across your organization. Save time by annotating data rapidly with model-in-the-loop hinting. Understand the full provenance of your data, models, workflows, and inferences. Deploy models where you need them, including for edge and IoT use cases. Getting valuable insights from your data is not just for data scientists. With Chariot’s low-code interface, meaningful collaboration can take place across teams. Train models rapidly using your organization's production data. Deploy models with one click and monitor models in production at scale. -
28
Arize AI
Arize AI
Automatically discover issues, diagnose problems, and improve models with Arize’s machine learning observability platform. Machine learning systems address mission critical needs for businesses and their customers every day, yet often fail to perform in the real world. Arize is an end-to-end observability platform to accelerate detecting and resolving issues for your AI models at large. Seamlessly enable observability for any model, from any platform, in any environment. Lightweight SDKs to send training, validation, and production datasets. Link real-time or delayed ground truth to predictions. Gain foresight and confidence that your models will perform as expected once deployed. Proactively catch any performance degradation, data/prediction drift, and quality issues before they spiral. Reduce the time to resolution (MTTR) for even the most complex models with flexible, easy-to-use tools for root cause analysis. -
29
Tecton
Tecton
Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure. -
30
Neural Designer
Artelnics
Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.Starting Price: $2495/year (per user) -
31
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
-
32
With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
-
33
MosaicML
MosaicML
Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved. -
34
Modzy
Modzy
Easily deploy, manage, monitor, and secure AI models in production. Modzy is the Enterprise AI platform designed to make it easy to scale trustworthy AI to your enterprise. Use Modzy to accelerate your deployment, management, and governance of trusted AI through the power of: Enterprise-grade platform features including security, APIs, and SDKs with unlimited model deployment, management, governance and monitoring at scale. Deployment options—your hardware, private, or public cloud. Includes AirGap deployments and tactical edge. Governance and auditing for centralized AI management, so you'll always have insight into AI models running in production in real-time. World's fastest Explainability (beta) solution for deep neural networks, creating audit logs to understand model predictions. Cutting-edge security features to block data poisoning and full-suite of patented Adversarial Defense to secure models running in production.Starting Price: $3.79 per hour -
35
Wallaroo.AI
Wallaroo.AI
Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale. -
36
Core ML
Apple
Core ML applies a machine learning algorithm to a set of training data to create a model. You use a model to make predictions based on new input data. Models can accomplish a wide variety of tasks that would be difficult or impractical to write in code. For example, you can train a model to categorize photos or detect specific objects within a photo directly from its pixels. After you create the model, integrate it in your app and deploy it on the user’s device. Your app uses Core ML APIs and user data to make predictions and to train or fine-tune the model. You can build and train a model with the Create ML app bundled with Xcode. Models trained using Create ML are in the Core ML model format and are ready to use in your app. Alternatively, you can use a wide variety of other machine learning libraries and then use Core ML Tools to convert the model into the Core ML format. Once a model is on a user’s device, you can use Core ML to retrain or fine-tune it on-device. -
37
UnionML
Union
Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior. -
38
Hopsworks
Logical Clocks
Hopsworks is an open-source Enterprise platform for the development and operation of Machine Learning (ML) pipelines at scale, based around the industry’s first Feature Store for ML. You can easily progress from data exploration and model development in Python using Jupyter notebooks and conda to running production quality end-to-end ML pipelines, without having to learn how to manage a Kubernetes cluster. Hopsworks can ingest data from the datasources you use. Whether they are in the cloud, on‑premise, IoT networks, or from your Industry 4.0-solution. Deploy on‑premises on your own hardware or at your preferred cloud provider. Hopsworks will provide the same user experience in the cloud or in the most secure of air‑gapped deployments. Learn how to set up customized alerts in Hopsworks for different events that are triggered as part of the ingestion pipeline.Starting Price: $1 per month -
39
Weights & Biases
Weights & Biases
Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence. -
40
FinetuneFast
FinetuneFast
FinetuneFast is your ultimate solution for finetuning AI models and deploying them quickly to start making money online with ease. Here are the key features that make FinetuneFast stand out: - Finetune your ML models in days, not weeks - The ultimate ML boilerplate for text-to-image, LLMs, and more - Build your first AI app and start earning online fast - Pre-configured training scripts for efficient model training - Efficient data loading pipelines for streamlined data processing - Hyperparameter optimization tools for improved model performance - Multi-GPU support out of the box for enhanced processing power - No-Code AI model finetuning for easy customization - One-click model deployment for quick and hassle-free deployment - Auto-scaling infrastructure for seamless scaling as your models grow - API endpoint generation for easy integration with other systems - Monitoring and logging setup for real-time performance tracking -
41
neptune.ai
neptune.ai
Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.Starting Price: $49 per month -
42
Google Cloud Datalab
Google
An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly. -
43
Create ML
Apple
Experience an entirely new way of training machine learning models on your Mac. Create ML takes the complexity out of model training while producing powerful Core ML models. Train multiple models using different datasets, all in a single project. Preview your model performance using Continuity with your iPhone camera and microphone on your Mac, or drop in sample data. Pause, save, resume, and extend your training process. Interactively learn how your model performs on test data from your evaluation set. Explore key metrics and their connections to specific examples to help identify challenging use cases, further investments in data collection, and opportunities to help improve model quality. Use an external graphics processing unit with your Mac for even better model training performance. Train models blazingly fast right on your Mac while taking advantage of CPU and GPU. Create ML has a variety of model types to choose from. -
44
ElectrifAi
ElectrifAi
Proven commercial value in weeks, for high value use cases across all major verticals. ElectrifAi has the largest library of pre-built machine learning models that seamlessly integrate into existing workflows to provide fast and reliable results. Get our domain expertise through pre-trained, pre-structured, or brand-new models. Building machine learning is risky and time-consuming. ElectrifAi delivers superior, fast and reliable results with over 1,000 ready-to-deploy machine learning models that seamlessly integrate into existing workflows. With comprehensive capabilities to deploy proven ML models, we bring you solutions faster. We make the machine learning models, complete the data ingestion and clean up the data. Our domain experts use your existing data to train the selected model that works best for your use case. -
45
Descartes Labs
Descartes Labs
The Descartes Labs Platform is designed to answer some of the world’s most complex and pressing geospatial analytics questions. Our customers use the platform to build algorithms and models that transform their businesses quickly, efficiently, and cost-effectively. By giving data scientists and their line-of-business colleagues the best geospatial data and modeling tools in one package, we help turn AI into a core competency. Data science teams can use our scaling infrastructure to design models faster than ever, using our massive data archive or their own. Customers rely on our cloud-based platform to quickly and securely scale computer vision, statistical, and machine learning models to inform business decisions with powerful raster-based analytics. Our extensive API documentation, tutorials, guides and demos provide a deep knowledge base for users allowing them to quickly deploy high-value applications across diverse industries. -
46
Prevision
Prevision.io
Building a model is an iterative process that can take weeks, months, or even years, and reproducing model results, maintaining version control, and auditing past work are complex. Model building is an iterative process. Ideally, you record not only each step but also how you arrived there. A model shouldn’t be a file hidden away somewhere, but instead a tangible object that all parties can track and analyze consistently. Prevision.io allows you to record each experiment as you train it along with its characteristics, automated analyses, and versions as your project progress, whether you created it using our AutoML or your own tools. Automatically experiment with dozens of feature engineering strategies and algorithm types to build highly performant models. In a single command, the engine automatically tries out different feature engineering strategies for every type of data (e.g. tabular, text, images) to maximize the information in your datasets. -
47
Feast
Tecton
Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution. -
48
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
49
Amazon SageMaker Studio
Amazon
Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Quickly move between steps of the ML lifecycle to fine-tune your models. Replay training experiments, tune model features and other inputs, and compare results, without leaving SageMaker Studio. -
50
Grace Enterprise AI Platform
2021.AI
The Grace Enterprise AI Platform, the AI platform with full support for Governance, Risk & Compliance (GRC) for AI. Grace offers an efficient, secure, and robust AI implementation across any organization, standardizing processes, and workflows across all your AI projects. Grace covers the full range of rich functionality your organization needs to become fully AI proficient and helps ensure regulatory excellence for AI, to avoid compliance requirements slowing or stopping AI implementation. Grace lowers the entry barriers for AI users across all functional and operational roles in your organization, including technical, IT, project management, and compliance, while still offering efficient workflows for experienced data scientists and engineers. Ensuring that all activities are traced, explained, and enforced. This includes all areas within the data science model development, data used for model training and development, model bias, and more.