Alternatives to RTE Runner
Compare RTE Runner alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to RTE Runner in 2024. Compare features, ratings, user reviews, pricing, and more from RTE Runner competitors and alternatives in order to make an informed decision for your business.
-
1
DataBuck
FirstEigen
(Bank CFO) “I don’t have confidence and trust in our data. We keep discovering hidden risks”. Since 70% of data initiatives fail due to unreliable data (Gartner research), are you risking your reputation by trusting the accuracy of your data that you share with your business stakeholders and partners? Data Trust Scores must be measured in Data Lakes, warehouses, and throughout the pipeline, to ensure the data is trustworthy and fit for use. It typically takes 4-6 weeks of manual effort just to set a file or table for validation. Then, the rules have to be constantly updated as the data evolves. The only scalable option is to automate data validation rules discovery and rules maintenance. DataBuck is an autonomous, self-learning, Data Observability, Quality, Trustability and Data Matching tool. It reduces effort by 90% and errors by 70%. "What took my team of 10 Engineers 2 years to do, DataBuck could complete it in less than 8 hours." (VP, Enterprise Data Office, a US bank) -
2
Dataloop AI
Dataloop AI
Manage unstructured data and pipelines to develop AI solutions at amazing speed. Enterprise-grade data platform for vision AI. Dataloop is a one-stop shop for building and deploying powerful computer vision pipelines data labeling, automating data ops, customizing production pipelines and weaving the human-in-the-loop for data validation. Our vision is to make machine learning-based systems accessible, affordable and scalable for all. Explore and analyze vast quantities of unstructured data from diverse sources. Rely on automated preprocessing and embeddings to identify similarities and find the data you need. Curate, version, clean, and route your data to wherever it’s needed to create exceptional AI applications. -
3
Union Cloud
Union.ai
Union.ai is an award-winning, Flyte-based data and ML orchestrator for scalable, reproducible ML pipelines. With Union.ai, you can write your code locally and easily deploy pipelines to remote Kubernetes clusters. “Flyte’s scalability, data lineage, and caching capabilities enable us to train hundreds of models on petabytes of geospatial data, giving us an edge in our business.” — Arno, CTO at Blackshark.ai “With Flyte, we want to give the power back to biologists. We want to stand up something that they can play around with different parameters for their models because not every … parameter is fixed. We want to make sure we are giving them the power to run the analyses.” — Krishna Yeramsetty, Principal Data Scientist at Infinome “Flyte plays a vital role as a key component of Gojek's ML Platform by providing exactly that." — Pradithya Aria Pura, Principal Engineer at GojStarting Price: Free (Flyte) -
4
Neuton AutoML
Neuton.AI
Neuton, a no-code AutoML solution, makes Machine Learning available to everyone. Explore data insights and make predictions leveraging Automated Artificial Intelligence. • NO coding • NO need for technical skills • NO need for data science knowledge Neuton provides comprehensive Explainability Office©, a unique set of tools that allow users to evaluate model quality at every stage, identify the logic behind the model analysis, understand why certain predictions have been made. • Exploratory Data Analysis • Feature Importance Matrix with class granularity • Model Interpreter • Feature Influence Matrix • Model-to-Data Relevance Indicators historical and for every prediction • Model Quality Index • Confidence Interval • Extensive list of supported metrics with Radar Diagram Neuton enables users to implement ML in days instead of months.Starting Price: $0 -
5
Vidora Cortex
Vidora
Attempting to build Machine Learning Pipelines internally often takes longer and costs more than planned. And worse, Gartner shows that more than 80% of AI Projects will fail. With Cortex, we help teams get up and running with machine learning faster and cheaper than alternatives, all while putting data to use to improve business outcomes. Empower every team with the ability to create their own AI Predictions. No longer will you need to wait to hire a team and build out costly infrastructure. With Cortex you can create predictions from the data you already have, all through an easy to use web interface. Now everyone is a Data Scientist! Cortex automates the process of turning raw data into Machine Learning Pipelines, eliminating the hardest and most time consuming aspects of AI. These predictions stay accurate and up to date by continuously ingesting new data and updating the underlying model automatically – no human intervention needed. -
6
Sagify
Sagify
Sagify complements AWS Sagemaker by hiding all its low-level details so that you can focus 100% on Machine Learning. Sagemaker is the ML engine and Sagify is the data science-friendly interface. You just need to implement 2 functions, a train and a predict in order to train, tune and deploy hundreds of ML models. Manage your ML models from one place without dealing with low level engineering tasks. No more flaky ML pipelines. Sagify offers 100% reliable training and deployment on AWS. Train, tune and deploy hundreds of ML models by implementing just 2 functions. -
7
Daria
XBrain
Daria’s advanced automated features allow users to quickly and easily build predictive models, significantly cutting back on days and weeks of iterative work associated with the traditional machine learning process. Remove financial and technological barriers to build AI systems from scratch for enterprises. Streamline and expedite workflows by lifting weeks of iterative work through automated machine learning for data experts. Get hands-on experience in machine learning with an intuitive GUI for data science beginners. Daria provides various data transformation functions to conveniently construct multiple feature sets. Daria automatically explores through millions of possible combinations of algorithms, modeling techniques and hyperparameters to select the best predictive model. Predictive models built with Daria can be deployed straight to production with a single line of code via Daria’s RESTful API. -
8
Datatron
Datatron
Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance. -
9
Strong Analytics
Strong Analytics
Our platforms provide a trusted foundation upon which to design, build, and deploy custom machine learning and artificial intelligence solutions. Build next-best-action applications that learn, adapt, and optimize using reinforcement-learning based algorithms. Custom, continuously-improving deep learning vision models to solve your unique challenges. Predict the future using state-of-the-art forecasts. Enable smarter decisions throughout your organization with cloud based tools to monitor and analyze. The process of taking a modern machine learning application from research and ad-hoc code to a robust, scalable platform remains a key challenge for experienced data science and engineering teams. Strong ML simplifies this process with a complete suite of tools to manage, deploy, and monitor your machine learning applications. -
10
Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
-
11
Kepler
Stradigi AI
Leverage Kepler’s Automated Data Science Workflows and remove the need for coding and machine learning experience. Onboard quickly and generate data-driven insights unique to your organization and your data. Receive continuous updates & additional Workflows built by our world-class AI and ML team via our SaaS-based model. Scale AI and accelerate time-to-value with a platform that grows with your business using the team and skills already present within your organization. Address complex business problems with advanced AI and machine learning capabilities without the need for technical ML experience. Leverage state-of-the-art, end-to-end automation, an extensive library of AI algorithms, and the ability to quickly deploy machine learning models. Organizations are using Kepler to augment and automate critical business processes to improve productivity and agility. -
12
Outerbounds
Outerbounds
Design and develop data-intensive projects with human-friendly, open-source Metaflow. Run, scale, and deploy them reliably on the fully managed Outerbounds platform. One platform for all your ML and data science projects. Access data securely from your existing data warehouses. Compute with a cluster optimized for scale and cost. 24/7 managed orchestration for production workflows. Use results to power any application. Give your data scientists superpowers, approved by your engineers. Outerbounds Platform allows data scientists to develop rapidly, experiment at scale, and deploy to production confidently. All within the outer bounds of policies and processes defined by your engineers, running on your cloud account, fully managed by us. Security is in our DNA, not at the perimeter. The platform adapts to your policies and compliance requirements through multiple layers of security. Centralized auth, a strict permission boundary, and granular task execution roles. -
13
SensiML Analytics Studio
SensiML
Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Create compact algorithms that execute on tiny IoT endpoints, not in the cloud. Collect accurate, traceable, version controlled datasets. Utilize advanced AutoML code-gen to quickly produce autonomous working device code. Choose your interface, level of AI expertise, and retain full access to every aspect of your algorithm. Build edge tuning models that that customize behavior as they see more data. SensiML Analytics Toolkit suite automates each step of the process for creating optimized AI IoT sensor recognition code. The overall workflow uses a growing library of advanced ML and AI algorithms to generate code that can learn from new data either the development phase or once deployed. Non-invasive, rapid disease screening applications utilizing intelligent classification of one or more bio-sensing inputs are critical tools for healthcare decision support. -
14
MyDataModels TADA
MyDataModels
Deploy best-in-class predictive analytics models TADA by MyDataModels helps professionals use their Small Data to enhance their business with a light, easy-to-set-up tool. TADA provides a predictive modeling solution leading to fast and usable results. Shift from days to a few hours into building ad hoc effective models with our 40% reduced time automated data preparation. Get outcomes from your data without programming or machine learning skills. Optimize your time with explainable and understandable models made of easy-to-read formulas. Turn your data into insights in a snap on any platform and create effective automated models. TADA removes the complexity of building predictive models by automating the generative machine learning process – data in, model out. Build and run machine learning models on any devices and platforms through our powerful web-based pre-processing features.Starting Price: $5347.46 per year -
15
Snitch AI
Snitch AI
Quality assurance for machine learning simplified. Snitch removes the noise to surface only the most useful information to improve your models. Track your model’s performance beyond just accuracy with powerful dashboards and analysis. Identify problems in your data pipeline and distribution shifts before they affect your predictions. Stay in production once you’ve deployed and gain visibility on your models & data throughout its cycle. Keep your data secure, cloud, on-prem, private cloud, hybrid, and you decide how to install Snitch. Work within the tools you love and integrate Snitch into your MLops pipeline! Get up and running quickly, we keep installation, learning, and running the product easy as pie. Accuracy can often be misleading. Look into robustness and feature importance to evaluate your models before deploying. Gain actionable insights to improve your models. Compare against historical metrics and your models’ baseline.Starting Price: $1,995 per year -
16
WEKA
WEKA
WEKA 4 delivers next-level performance while running impossible workloads anywhere, without compromise. Artificial Intelligence is creating new business opportunities. Operationalizing AI requires the ability to process massive amounts of data from different sources in a short time. WEKA offers a complete solution engineered to accelerate DataOps challenges across the entire data pipeline whether running across on-prem and the public cloud. Storing and analyzing large data sets in life sciences whether it is next-generation sequencing, imaging, or microscopy requires a modern approach for faster insights and better economics. WEKA accelerates time to insights by eliminating the performance bottlenecks across the Life Sciences data pipeline, while significantly reducing the cost and complexity of managing data at scale. WEKA offers a modern storage architecture that can handle the most demanding I/O-intensive workloads and latency-sensitive applications at an exabyte scale. -
17
Salford Predictive Modeler (SPM)
Minitab
The Salford Predictive Modeler® (SPM) software suite is a highly accurate and ultra-fast platform for developing predictive, descriptive, and analytical models. The Salford Predictive Modeler® software suite includes the CART®, MARS®, TreeNet®, Random Forests® engines, as well as powerful new automation and modeling capabilities not found elsewhere. The SPM software suite’s data mining technologies span classification, regression, survival analysis, missing value analysis, data binning and clustering/segmentation. SPM algorithms are considered to be essential in sophisticated data science circles. The SPM software suite‘s automation accelerates the process of model building by conducting substantial portions of the model exploration and refinement process for the analyst. We package a complete set of results from alternative modeling strategies for easy review. -
18
Roboflow
Roboflow
Roboflow has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of data labeling, model training, or model deployment, Roboflow gives you building blocks to bring custom computer vision solutions to your business.Starting Price: $250/month -
19
Oracle Data Science
Oracle
A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results. -
20
Valohai
Valohai
Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.Starting Price: $560 per month -
21
Censius is an innovative startup in the machine learning and AI space. We bring AI observability to enterprise ML teams. Ensuring that ML models' performance is in check is imperative with the extensive use of machine learning models. Censius is an AI Observability Platform that helps organizations of all scales confidently make their machine-learning models work in production. The company launched its flagship AI observability platform that helps bring accountability and explainability to data science projects. A comprehensive ML monitoring solution helps proactively monitor entire ML pipelines to detect and fix ML issues such as drift, skew, data integrity, and data quality issues. Upon integrating Censius, you can: 1. Monitor and log the necessary model vitals 2. Reduce time-to-recover by detecting issues precisely 3. Explain issues and recovery strategies to stakeholders 4. Explain model decisions 5. Reduce downtime for end-users 6. Build customer trust
-
22
Graviti
Graviti
Unstructured data is the future of AI. Unlock this future now and build an ML/AI pipeline that scales all of your unstructured data in one place. Use better data to deliver better models, only with Graviti. Get to know the data platform that enables AI developers with management, query, and version control features that are designed for unstructured data. Quality data is no longer a pricey dream. Manage your metadata, annotation, and predictions in one place. Customize filters and visualize filtering results to get you straight to the data that best match your needs. Utilize a Git-like structure to manage data versions and collaborate with your teammates. Role-based access control and visualization of version differences allows your team to work together safely and flexibly. Automate your data pipeline with Graviti’s built-in marketplace and workflow builder. Level-up to fast model iterations with no more grinding. -
23
Chalk
Chalk
Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.Starting Price: Free -
24
Arize AI
Arize AI
Automatically discover issues, diagnose problems, and improve models with Arize’s machine learning observability platform. Machine learning systems address mission critical needs for businesses and their customers every day, yet often fail to perform in the real world. Arize is an end-to-end observability platform to accelerate detecting and resolving issues for your AI models at large. Seamlessly enable observability for any model, from any platform, in any environment. Lightweight SDKs to send training, validation, and production datasets. Link real-time or delayed ground truth to predictions. Gain foresight and confidence that your models will perform as expected once deployed. Proactively catch any performance degradation, data/prediction drift, and quality issues before they spiral. Reduce the time to resolution (MTTR) for even the most complex models with flexible, easy-to-use tools for root cause analysis. -
25
PredictSense
Winjit
PredictSense is an end-to-end Machine Learning platform powered by AutoML to create AI-powered analytical solutions. Fuel the new technological revolution of tomorrow by accelerating machine intelligence. AI is key to unlocking value from enterprise data investments. PredictSense enables businesses to monetize critical data infrastructure and technology investments by creating AI driven advanced analytical solutions rapidly. Empower data science and business teams with advanced capabilities to quickly build and deploy robust technology solutions at scale. Easily integrate AI into the current product ecosystem and fast track GTM for new AI solutions. Incur huge savings in cost, time and effort by building complex ML models in AutoML. PredictSense democratizes AI for every individual in the organization and creates a simple, user-friendly collaboration platform to seamlessly manage critical ML deployments. -
26
Tecton
Tecton
Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure. -
27
Google Cloud AutoML
Google
Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. It relies on Google’s state-of-the-art transfer learning and neural architecture search technology. Cloud AutoML leverages more than 10 years of proprietary Google Research technology to help your machine learning models achieve faster performance and more accurate predictions. Use Cloud AutoML’s simple graphical user interface to train, evaluate, improve, and deploy models based on your data. You’re only a few minutes away from your own custom machine learning model. Google’s human labeling service can put a team of people to work annotating or cleaning your labels to make sure your models are being trained on high-quality data. -
28
TAZI
TAZI
TAZI is highly focused on business outcome and ROI of AI predictions. TAZI can be used by any business user, whether it is a business intelligence analyst or a C-level executive. TAZI Profiler to immediately understand and gain insights on your ML-Ready data sources. TAZI Business Dashboards and Explanation model to understand and validate the AI models for production. Detect and predict different subsets of your operations for ROI optimization. Empowers you to check data quality and important statistics by automating the manual work usually involved in data discovery and preparation. Makes feature engineering easier with recommendations even for composite features and data transformations. -
29
KuantSol
KuantSol
E2E modeling that integrates Business perspective and subject matter expertise with data science (Statistical Models + ML + Business context and objectives). This combination is material to health and competitive advantage of the BFSI. • Models developed on KuantSol are stable, optimal, standardized and can be leveraged for long periods of time. • Standardized model documentation for federal regulators that is Submission-ready. • Purpose-built configuration options at every decision step and a comprehensive output analysis make the end model explainable to auditors, regulators, and executives. Leading ML/AI vendors, for example, offer a few model options and selection criteria. Consulting firms may offer more but would require more time and expert resources; KuantSol offers 150+ • KuantSol advanced configuration enables auto model development. -
30
MindsDB
MindsDB
Open-Source AI layer for databases. Boost efficiency of your projects by bringing Machine Learning capabilities directly to the data domain. MindsDB provides a simple way to create, train and test ML models and then publish them as virtual AI-Tables into databases. Integrate seamlessly with most of databases on the market. Use SQL queries for all manipulation with ML models. Improve model training speed with GPU without affecting your database performance. Get insights on why the ML model reached its conclusions and what affects prediction confidence. Visual tools that allows you to investigate model performance. SQL and Python queries that return explainability insights in a code. What-if analysis to evaluate confidence based on different inputs. Automate the process of applying machine learning with the state-of-the-art Lightwood AutoML library. Build custom solutions with Machine Learning in your favorite programming language. -
31
scikit-learn
scikit-learn
Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.Starting Price: Free -
32
JADBio AutoML
JADBio
JADBio is a state-of-the-art automated Machine Learning Platform without the need for coding. With its breakthrough algorithms it can solve open problems in machine learning. Anybody can use it and perform a sophisticated and correct machine learning analysis even if they do not know any math, statistics, or coding. It is purpose-built for life science data and particularly molecular data. This means that it can deal with the idiosyncrasies of molecular data such as very low sample size and very high number of measured quantities that could reach to millions. Life scientists need it to understand what are the features and biomarkers that are predictive and important, what is their role, and get intuition about the molecular mechanisms involved. Knowledge discovery is often more important than a predictive model. So, JADBio focuses on feature selection and its interpretation.Starting Price: Free -
33
The biggest challenge to scaling AI-powered decision-making is unused data. IBM Cloud Pak® for Data is a unified platform that delivers a data fabric to connect and access siloed data on-premises or across multiple clouds without moving it. Simplify access to data by automatically discovering and curating it to deliver actionable knowledge assets to your users, while automating policy enforcement to safeguard use. Further accelerate insights with an integrated modern cloud data warehouse. Universally safeguard data usage with privacy and usage policy enforcement across all data. Use a modern, high-performance cloud data warehouse to achieve faster insights. Empower data scientists, developers and analysts with an integrated experience to build, deploy and manage trustworthy AI models on any cloud. Supercharge analytics with Netezza, a high-performance data warehouse.Starting Price: $699 per month
-
34
SANCARE
SANCARE
SANCARE is a start-up specializing in Machine Learning applied to hospital data. We collaborate with some of the best scientists in the field. SANCARE provides Medical Information Departments with an ergonomic and intuitive interface, promoting rapid adoption. The user has access to all the documents that constitute the computerized patient record. A true production tool, each step of the coding process is traced for external checks. Machine learning makes it possible to develop powerful predictive models from large volumes of data, and to take into account the notion of context, which is not possible for rule engines or semantic analysis engines. It is therefore possible to automate complex decision-making processes or to detect weak signals ignored by humans. The SANCARE software machine learning engine is based on a probabilistic approach. It learns over a large amount of examples to predict the right codes, without any indication. -
35
Zinia
Zinia
The Zinia artificial intelligence platform connects the dots between the key business decision maker and AI. You can now build your trusted AI models without depending on technical teams and ensure alignment of AI with business objectives. Ground-breaking technology simplified to help you build AI backwards from business. Improves revenue by 15-20% and increases efficiency by cutting AI implementation time from months to days. Zinia optimises business outcomes with human-centered AI. Most AI development in organisations is misaligned with business KPIs. Zinia is built with the vision to address this key problem by democratising AI for you. Zinia brings business fit cutting-edge ML and AI Technology into your hands. Built by a team with more than 50 years of experience in AI, Zinia is your trusted platform that simplifies ground-breaking technology and gives you the fastest path from data to business decisions. -
36
Emly Labs
Emly Labs
Emly Labs is an AI framework designed to make AI accessible for users at all technical levels through a user-friendly platform. It offers AI project management with tools for guided workflows and automation for faster execution. The platform encourages team collaboration and innovation, provides no-code data preparation, and integrates external data for robust AI models. Emly AutoML automates data processing and model evaluation, reducing human input. It prioritizes transparency, with explainable AI features and robust auditing for compliance. Security measures include data isolation, role-based access, and secure integrations. Additionally, Emly's cost-effective infrastructure allows on-demand resource provisioning and policy management, enhancing experimentation and innovation while reducing costs and risks.Starting Price: $99/month -
37
Cogito
Cogito
Innovation is our nucleus. Cogito shoulders AI enterprises and business initiatives by deploying a proficient workforce for data annotation, content moderation and any other data processing services. Our data enrichment services provide one-stop solutions for all your data-related needs. Our scalable, immensely experienced, brilliant minds unite their knowledge to meet your requirements swiftly with precise accuracy while maintaining full data security and confidentiality. We specializes in Human Empowered Automation. Our mission is to help our customers innovate and scale by solving their day-to-day data needs. Using our skilled on-demand workforce, we partner with Artificial Intelligence, Technology and eCommerce clients to develop high-quality data sets used to build and enhance various cutting-edge business applications. Delivering cost-effective, highly accurate, completely scalable, and secure data enrichment solutions for Businesses and AI Enterprises. -
38
DreamQuark Brain
DreamQuark
AI can be slow, confusing, and costly. Brain empowers wealth managers to make hyper-personalized insights simply and quickly. Serve your clients better and grow smarter with Brain. Turn your data into user-friendly insights in a few clicks to guide your next best action. Brain’s explainable AI gives advisors the reasons behind every recommendation. Use Brain’s CX application or integrate it on your own CX platform and cloud provider. Increase your revenues by predicting which clients will respond best to cross-sell and upsell opportunities. Improve the performance of your campaigns by identifying which clients are likely to take an interest in a product and why. Retain your clients before it’s too late by quickly discovering who is most likely to leave and why. Brain’s explainable AI makes hyper-personalized insights understandable and easier for advisors to act on. Brain simplifies and automates the creation and maintenance of insights, saving you time and money. -
39
Automaton AI
Automaton AI
With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling. -
40
Ensemble Dark Matter
Ensemble
Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain. -
41
Domino Enterprise MLOps Platform
Domino Data Lab
The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
42
MosaicML
MosaicML
Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved. -
43
FinetuneFast
FinetuneFast
FinetuneFast is your ultimate solution for finetuning AI models and deploying them quickly to start making money online with ease. Here are the key features that make FinetuneFast stand out: - Finetune your ML models in days, not weeks - The ultimate ML boilerplate for text-to-image, LLMs, and more - Build your first AI app and start earning online fast - Pre-configured training scripts for efficient model training - Efficient data loading pipelines for streamlined data processing - Hyperparameter optimization tools for improved model performance - Multi-GPU support out of the box for enhanced processing power - No-Code AI model finetuning for easy customization - One-click model deployment for quick and hassle-free deployment - Auto-scaling infrastructure for seamless scaling as your models grow - API endpoint generation for easy integration with other systems - Monitoring and logging setup for real-time performance tracking -
44
Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
-
45
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model. -
46
Towhee
Towhee
You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.Starting Price: Free -
47
Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
-
48
Core ML
Apple
Core ML applies a machine learning algorithm to a set of training data to create a model. You use a model to make predictions based on new input data. Models can accomplish a wide variety of tasks that would be difficult or impractical to write in code. For example, you can train a model to categorize photos or detect specific objects within a photo directly from its pixels. After you create the model, integrate it in your app and deploy it on the user’s device. Your app uses Core ML APIs and user data to make predictions and to train or fine-tune the model. You can build and train a model with the Create ML app bundled with Xcode. Models trained using Create ML are in the Core ML model format and are ready to use in your app. Alternatively, you can use a wide variety of other machine learning libraries and then use Core ML Tools to convert the model into the Core ML format. Once a model is on a user’s device, you can use Core ML to retrain or fine-tune it on-device. -
49
Deeploy
Deeploy
Deeploy helps you to stay in control of your ML models. Easily deploy your models on our responsible AI platform, without compromising on transparency, control, and compliance. Nowadays, transparency, explainability, and security of AI models is more important than ever. Having a safe and secure environment to deploy your models enables you to continuously monitor your model performance with confidence and responsibility. Over the years, we experienced the importance of human involvement with machine learning. Only when machine learning systems are explainable and accountable, experts and consumers can provide feedback to these systems, overrule decisions when necessary and grow their trust. That’s why we created Deeploy. -
50
Modelbit
Modelbit
Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.