Alternatives to Qwen3-Max

Compare Qwen3-Max alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Qwen3-Max in 2026. Compare features, ratings, user reviews, pricing, and more from Qwen3-Max competitors and alternatives in order to make an informed decision for your business.

  • 1
    Llama 4 Behemoth
    Llama 4 Behemoth is Meta's most powerful AI model to date, featuring a massive 288 billion active parameters. It excels in multimodal tasks, outperforming previous models like GPT-4.5 and Gemini 2.0 Pro across multiple STEM-focused benchmarks such as MATH-500 and GPQA Diamond. As the teacher model for the Llama 4 series, Behemoth sets the foundation for models like Llama 4 Maverick and Llama 4 Scout. While still in training, Llama 4 Behemoth demonstrates unmatched intelligence, pushing the boundaries of AI in fields like math, multilinguality, and image understanding.
  • 2
    Amazon Nova 2 Pro
    Amazon Nova 2 Pro is Amazon’s most advanced reasoning model, designed to handle highly complex, multimodal tasks across text, images, video, and speech with exceptional accuracy. It excels in deep problem-solving scenarios such as agentic coding, multi-document analysis, long-range planning, and advanced math. With benchmark performance equal or superior to leading models like Claude Sonnet 4.5, GPT-5.1, and Gemini Pro, Nova 2 Pro delivers top-tier intelligence across a wide range of enterprise workloads. The model includes built-in web grounding and code execution, ensuring responses remain factual, current, and contextually accurate. Nova 2 Pro can also serve as a “teacher model,” enabling knowledge distillation into smaller, purpose-built variants for specific domains. It is engineered for organizations that require precision, reliability, and frontier-level reasoning in mission-critical AI applications.
  • 3
    Llama 4 Maverick
    Llama 4 Maverick is one of the most advanced multimodal AI models from Meta, featuring 17 billion active parameters and 128 experts. It surpasses its competitors like GPT-4o and Gemini 2.0 Flash in a broad range of benchmarks, especially in tasks related to coding, reasoning, and multilingual capabilities. Llama 4 Maverick combines image and text understanding, enabling it to deliver industry-leading results in image-grounding tasks and precise, high-quality output. With its efficient performance at a reduced parameter size, Maverick offers exceptional value, especially in general assistant and chat applications.
  • 4
    Claude Opus 4.1
    Claude Opus 4.1 is an incremental upgrade to Claude Opus 4 that boosts coding, agentic reasoning, and data-analysis performance without changing deployment complexity. It raises coding accuracy to 74.5 percent on SWE-bench Verified and sharpens in-depth research and detailed tracking for agentic search tasks. GitHub reports notable gains in multi-file code refactoring, while Rakuten Group highlights its precision in pinpointing exact corrections within large codebases without introducing bugs. Independent benchmarks show about a one-standard-deviation improvement on junior developer tests compared to Opus 4, mirroring major leaps seen in prior Claude releases. Opus 4.1 is available now to paid Claude users, in Claude Code, and via the Anthropic API (model ID claude-opus-4-1-20250805), as well as through Amazon Bedrock and Google Cloud Vertex AI, and integrates seamlessly into existing workflows with no additional setup beyond selecting the new model.
  • 5
    Claude Opus 4.5
    Claude Opus 4.5 is Anthropic’s newest flagship model, delivering major improvements in reasoning, coding, agentic workflows, and real-world problem solving. It outperforms previous models and leading competitors on benchmarks such as SWE-bench, multilingual coding tests, and advanced agent evaluations. Opus 4.5 also introduces stronger safety features, including significantly higher resistance to prompt injection and improved alignment across sensitive tasks. Developers gain new controls through the Claude API—like effort parameters, context compaction, and advanced tool use—allowing for more efficient, longer-running agentic workflows. Product updates across Claude, Claude Code, the Chrome extension, and Excel integrations expand how users interact with the model for software engineering, research, and everyday productivity. Overall, Claude Opus 4.5 marks a substantial step forward in capability, reliability, and usability for developers, enterprises, and end users.
  • 6
    Claude Sonnet 4.5
    Claude Sonnet 4.5 is Anthropic’s latest frontier model, designed to excel in long-horizon coding, agentic workflows, and intensive computer use while maintaining safety and alignment. It achieves state-of-the-art performance on the SWE-bench Verified benchmark (for software engineering) and leads on OSWorld (a computer use benchmark), with the ability to sustain focus over 30 hours on complex, multi-step tasks. The model introduces improvements in tool handling, memory management, and context processing, enabling more sophisticated reasoning, better domain understanding (from finance and law to STEM), and deeper code comprehension. It supports context editing and memory tools to sustain long conversations or multi-agent tasks, and allows code execution and file creation within Claude apps. Sonnet 4.5 is deployed at AI Safety Level 3 (ASL-3), with classifiers protecting against inputs or outputs tied to risky domains, and includes mitigations against prompt injection.
  • 7
    DeepSeek-V3.2-Speciale
    DeepSeek-V3.2-Speciale is a high-compute variant of the DeepSeek-V3.2 model, created specifically for deep reasoning and advanced problem-solving tasks. It builds on DeepSeek Sparse Attention (DSA), a custom long-context attention mechanism that reduces computational overhead while preserving high performance. Through a large-scale reinforcement learning framework and extensive post-training compute, the Speciale variant surpasses GPT-5 on reasoning benchmarks and matches the capabilities of Gemini-3.0-Pro. The model achieved gold-medal performance in the International Mathematical Olympiad (IMO) 2025 and International Olympiad in Informatics (IOI) 2025. DeepSeek-V3.2-Speciale does not support tool-calling, making it purely optimized for uninterrupted reasoning and analytical accuracy. Released under the MIT license, it provides researchers and developers an open, state-of-the-art model focused entirely on high-precision reasoning.
  • 8
    Grok 4
    Grok 4 is the latest AI model from Elon Musk’s xAI, marking a significant advancement in AI reasoning and natural language understanding. Developed on the Colossus supercomputer, Grok 4 supports multimodal inputs including text and images, with plans to add video capabilities soon. It features enhanced precision in language tasks and has demonstrated superior performance in scientific reasoning and visual problem-solving compared to other leading AI models. Designed for developers, researchers, and technical users, Grok 4 offers powerful tools for complex tasks. The model incorporates improved moderation to address previous concerns about biased or problematic outputs. Grok 4 represents a major leap forward in AI’s ability to understand and generate human-like responses.
  • 9
    Grok 4.1
    Grok 4.1 is an advanced AI model developed by Elon Musk’s xAI, designed to push the limits of reasoning and natural language understanding. Built on the powerful Colossus supercomputer, it processes multimodal inputs including text and images, with upcoming support for video. The model delivers exceptional accuracy in scientific, technical, and linguistic tasks. Its architecture enables complex reasoning and nuanced response generation that rivals the best AI systems in the world. Enhanced moderation ensures more responsible and unbiased outputs than earlier versions. Grok 4.1 is a breakthrough in creating AI that can think, interpret, and respond more like a human.
  • 10
    Grok 4.1 Fast
    Grok 4.1 Fast is the newest xAI model designed to deliver advanced tool-calling capabilities with a massive 2-million-token context window. It excels at complex real-world tasks such as customer support, finance, troubleshooting, and dynamic agent workflows. The model pairs seamlessly with the new Agent Tools API, which enables real-time web search, X search, file retrieval, and secure code execution. This combination gives developers the power to build fully autonomous, production-grade agents that plan, reason, and use tools effectively. Grok 4.1 Fast is trained with long-horizon reinforcement learning, ensuring stable multi-turn accuracy even across extremely long prompts. With its speed, cost-efficiency, and high benchmark scores, it sets a new standard for scalable enterprise-grade AI agents.
  • 11
    Grok 4.1 Thinking
    Grok 4.1 Thinking is xAI’s advanced reasoning-focused AI model designed for deeper analysis, reflection, and structured problem-solving. It uses explicit thinking tokens to reason through complex prompts before delivering a response, resulting in more accurate and context-aware outputs. The model excels in tasks that require multi-step logic, nuanced understanding, and thoughtful explanations. Grok 4.1 Thinking demonstrates a strong, coherent personality while maintaining analytical rigor and reliability. It has achieved the top overall ranking on the LMArena Text Leaderboard, reflecting strong human preference in blind evaluations. The model also shows leading performance in emotional intelligence and creative reasoning benchmarks. Grok 4.1 Thinking is built for users who value clarity, depth, and defensible reasoning in AI interactions.
  • 12
    GPT-5

    GPT-5

    OpenAI

    GPT-5 is OpenAI’s most advanced AI model, delivering smarter, faster, and more useful responses across a wide range of topics including math, science, finance, and law. It features built-in thinking capabilities that allow it to provide expert-level answers and perform complex reasoning. GPT-5 can handle long context lengths and generate detailed outputs, making it ideal for coding, research, and creative writing. The model includes a ‘verbosity’ parameter for customizable response length and improved personality control. It integrates with business tools like Google Drive and SharePoint to provide context-aware answers while respecting security permissions. Available to everyone, GPT-5 empowers users to collaborate with an AI assistant that feels like a knowledgeable colleague.
    Starting Price: $1.25 per 1M tokens
  • 13
    GPT-5.1

    GPT-5.1

    OpenAI

    GPT-5.1 is the latest update in the GPT-5 series, designed to make ChatGPT dramatically smarter and more conversational. The release introduces two distinct model variants: GPT-5.1 Instant, which is described as the most-used model and is now warmer, better at following instructions, and more intelligent; and GPT-5.1 Thinking, which is the advanced reasoning engine that’s been tuned to be easier to understand, faster on straightforward tasks, and more persistent on complex ones. Users' queries are now routed automatically to the variant best-suited to the task. The update emphasizes not just improved raw intelligence but also enhanced communication style; the models are tuned to be more natural, enjoyable to talk to, and better aligned with user intents. The system card addendum notes that GPT-5.1 Instant uses “adaptive reasoning” that lets it decide when to think more deeply before responding, while GPT-5.1 Thinking adapts its thinking time accurately to the question at hand.
  • 14
    GPT-5.1 Pro
    GPT-5.1 Pro is the highest-performance version of the GPT-5.1 model family, designed for research-grade reasoning and advanced analytical workloads. It delivers deeper, more structured thinking, making it ideal for complex problem-solving across coding, science, finance, law, and technical research. Unlike the Instant and Thinking versions, GPT-5.1 Pro is built to maintain accuracy under heavy cognitive load, producing clearer logic and more reliable multi-step reasoning. Pro users also gain access to extended context windows, allowing significantly longer inputs and deeper information processing. While it supports the full range of ChatGPT features, GPT-5.1 Pro is optimized for precision, rigor, and high-stakes tasks. It is available exclusively to ChatGPT Pro and Business customers.
  • 15
    GPT-5.2 Instant
    GPT-5.2 Instant is the fast, capable variant of OpenAI’s GPT-5.2 model family designed for everyday work and learning with clear improvements in information-seeking questions, how-tos and walkthroughs, technical writing, and translation compared to prior versions. It builds on the warmer conversational tone introduced in GPT-5.1 Instant and produces clearer explanations that surface key information upfront, making it easier for users to get concise, accurate answers quickly. GPT-5.2 Instant delivers speed and responsiveness for typical tasks like answering queries, generating summaries, assisting with research, and helping with writing and editing, while incorporating broader enhancements from the GPT-5.2 series in reasoning, long-context handling, and factual grounding. As part of the GPT-5.2 lineup, it shares the same foundational improvements that boost overall reliability and performance across a wide range of everyday activities.
  • 16
    GPT-5.2 Pro
    GPT-5.2 Pro is the highest-capability variant of OpenAI’s latest GPT-5.2 model family, built to deliver professional-grade reasoning, complex task performance, and enhanced accuracy for demanding knowledge work, creative problem-solving, and enterprise-level applications. It builds on the foundational improvements of GPT-5.2, including stronger general intelligence, superior long-context understanding, better factual grounding, and improved tool use, while using more compute and deeper processing to produce more thoughtful, reliable, and context-rich responses for users with intricate, multi-step requirements. GPT-5.2 Pro is designed to handle challenging workflows such as advanced coding and debugging, deep data analysis, research synthesis, extensive document comprehension, and complex project planning with greater precision and fewer errors than lighter variants.
  • 17
    GPT-5.2 Thinking
    GPT-5.2 Thinking is the highest-capability configuration in OpenAI’s GPT-5.2 model family, engineered for deep, expert-level reasoning, complex task execution, and advanced problem solving across long contexts and professional domains. Built on the foundational GPT-5.2 architecture with improvements in grounding, stability, and reasoning quality, this variant applies more compute and reasoning effort to generate responses that are more accurate, structured, and contextually rich when handling highly intricate workflows, multi-step analysis, and domain-specific challenges. GPT-5.2 Thinking excels at tasks that require sustained logical coherence, such as detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and sophisticated technical writing, and it outperforms lighter variants on benchmarks that test professional skills and deep comprehension.
  • 18
    GLM-4.1V

    GLM-4.1V

    Zhipu AI

    GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.
  • 19
    GLM-4.5V

    GLM-4.5V

    Zhipu AI

    GLM-4.5V builds on the GLM-4.5-Air foundation, using a Mixture-of-Experts (MoE) architecture with 106 billion total parameters and 12 billion activation parameters. It achieves state-of-the-art performance among open-source VLMs of similar scale across 42 public benchmarks, excelling in image, video, document, and GUI-based tasks. It supports a broad range of multimodal capabilities, including image reasoning (scene understanding, spatial recognition, multi-image analysis), video understanding (segmentation, event recognition), complex chart and long-document parsing, GUI-agent workflows (screen reading, icon recognition, desktop automation), and precise visual grounding (e.g., locating objects and returning bounding boxes). GLM-4.5V also introduces a “Thinking Mode” switch, allowing users to choose between fast responses or deeper reasoning when needed.
  • 20
    GLM-4.5V-Flash
    GLM-4.5V-Flash is an open source vision-language model, designed to bring strong multimodal capabilities into a lightweight, deployable package. It supports image, video, document, and GUI inputs, enabling tasks such as scene understanding, chart and document parsing, screen reading, and multi-image analysis. Compared to larger models in the series, GLM-4.5V-Flash offers a compact footprint while retaining core VLM capabilities like visual reasoning, video understanding, GUI task handling, and complex document parsing. It can serve in “GUI agent” workflows, meaning it can interpret screenshots or desktop captures, recognize icons or UI elements, and assist with automated desktop or web-based tasks. Although it forgoes some of the largest-model performance gains, GLM-4.5V-Flash remains versatile for real-world multimodal tasks where efficiency, lower resource usage, and broad modality support are prioritized.
  • 21
    GLM-4.6

    GLM-4.6

    Zhipu AI

    GLM-4.6 advances upon its predecessor with stronger reasoning, coding, and agentic capabilities: it demonstrates clear improvements in inferential performance, supports tool use during inference, and more effectively integrates into agent frameworks. In benchmark tests spanning reasoning, coding, and agents, GLM-4.6 outperforms GLM-4.5 and shows competitive strength against models such as DeepSeek-V3.2-Exp and Claude Sonnet 4, though it still trails Claude Sonnet 4.5 in pure coding performance. In real-world tests using an extended “CC-Bench” suite across front-end development, tool building, data analysis, and algorithmic tasks, GLM-4.6 beats GLM-4.5 and approaches parity with Claude Sonnet 4, winning ~48.6% of head-to-head comparisons, while also achieving ~15% better token efficiency. GLM-4.6 is available via the Z.ai API, and developers can integrate it as an LLM backend or agent core using the platform’s API.
  • 22
    GLM-4.6V

    GLM-4.6V

    Zhipu AI

    GLM-4.6V is a state-of-the-art open source multimodal vision-language model from the Z.ai (GLM-V) family designed for reasoning, perception, and action. It ships in two variants: a full-scale version (106B parameters) for cloud or high-performance clusters, and a lightweight “Flash” variant (9B) optimized for local deployment or low-latency use. GLM-4.6V supports a native context window of up to 128K tokens during training, enabling it to process very long documents or multimodal inputs. Crucially, it integrates native Function Calling, meaning the model can take images, screenshots, documents, or other visual media as input directly (without manual text conversion), reason about them, and trigger tool calls, bridging “visual perception” with “executable action.” This enables a wide spectrum of capabilities; interleaved image-and-text content generation (for example, combining document understanding with text summarization or generation of image-annotated responses).
  • 23
    GLM-4.7

    GLM-4.7

    Zhipu AI

    GLM-4.7 is an advanced large language model designed to significantly elevate coding, reasoning, and agentic task performance. It delivers major improvements over GLM-4.6 in multilingual coding, terminal-based tasks, and real-world software engineering benchmarks such as SWE-bench and Terminal Bench. GLM-4.7 supports “thinking before acting,” enabling more stable, accurate, and controllable behavior in complex coding and agent workflows. The model also introduces strong gains in UI and frontend generation, producing cleaner webpages, better layouts, and more polished slides. Enhanced tool-using capabilities allow GLM-4.7 to perform more effectively in web browsing, automation, and agent benchmarks. Its reasoning and mathematical performance has improved substantially, showing strong results on advanced evaluation suites. GLM-4.7 is available via Z.ai, API platforms, coding agents, and local deployment for flexible adoption.
  • 24
    Gemini 2.5 Pro
    Gemini 2.5 Pro is an advanced AI model designed to handle complex tasks with enhanced reasoning and coding capabilities. Leading common benchmarks, it excels in math, science, and coding, demonstrating strong performance in tasks like web app creation and code transformation. Built on the Gemini 2.5 foundation, it features a 1 million token context window, enabling it to process vast datasets from various sources such as text, images, and code repositories. Available now in Google AI Studio, Gemini 2.5 Pro is optimized for more sophisticated applications and supports advanced users with improved performance for complex problem-solving.
    Starting Price: $19.99/month
  • 25
    Gemini 3 Pro
    Gemini 3 Pro is Google’s most advanced multimodal AI model, built for developers who want to bring ideas to life with intelligence, precision, and creativity. It delivers breakthrough performance across reasoning, coding, and multimodal understanding—surpassing Gemini 2.5 Pro in both speed and capability. The model excels in agentic workflows, enabling autonomous coding, debugging, and refactoring across entire projects with long-context awareness. With superior performance in image, video, and spatial reasoning, Gemini 3 Pro powers next-generation applications in development, robotics, XR, and document intelligence. Developers can access it through the Gemini API, Google AI Studio, or Vertex AI, integrating seamlessly into existing tools and IDEs. Whether generating code, analyzing visuals, or building interactive apps from a single prompt, Gemini 3 Pro represents the future of intelligent, multimodal AI development.
    Starting Price: $19.99/month
  • 26
    Kimi K2

    Kimi K2

    Moonshot AI

    Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.
  • 27
    Kimi K2 Thinking

    Kimi K2 Thinking

    Moonshot AI

    Kimi K2 Thinking is an advanced open source reasoning model developed by Moonshot AI, designed specifically for long-horizon, multi-step workflows where the system interleaves chain-of-thought processes with tool invocation across hundreds of sequential tasks. The model uses a mixture-of-experts architecture with a total of 1 trillion parameters, yet only about 32 billion parameters are activated per inference pass, optimizing efficiency while maintaining vast capacity. It supports a context window of up to 256,000 tokens, enabling the handling of extremely long inputs and reasoning chains without losing coherence. Native INT4 quantization is built in, which reduces inference latency and memory usage without performance degradation. Kimi K2 Thinking is explicitly built for agentic workflows; it can autonomously call external tools, manage sequential logic steps (up to and typically between 200-300 tool calls in a single chain), and maintain consistent reasoning.
  • 28
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
  • 29
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
  • 30
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
  • 31
    CodeQwen

    CodeQwen

    Alibaba

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
  • 32
    Qwen3

    Qwen3

    Alibaba

    Qwen3, the latest iteration of the Qwen family of large language models, introduces groundbreaking features that enhance performance across coding, math, and general capabilities. With models like the Qwen3-235B-A22B and Qwen3-30B-A3B, Qwen3 achieves impressive results compared to top-tier models, thanks to its hybrid thinking modes that allow users to control the balance between deep reasoning and quick responses. The platform supports 119 languages and dialects, making it an ideal choice for global applications. Its pre-training process, which uses 36 trillion tokens, enables robust performance, and advanced reinforcement learning (RL) techniques continue to refine its capabilities. Available on platforms like Hugging Face and ModelScope, Qwen3 offers a powerful tool for developers and researchers working in diverse fields.
  • 33
    QwQ-32B

    QwQ-32B

    Alibaba

    ​QwQ-32B is an advanced reasoning model developed by Alibaba Cloud's Qwen team, designed to enhance AI's problem-solving capabilities. With 32 billion parameters, it achieves performance comparable to state-of-the-art models like DeepSeek's R1, which has 671 billion parameters. This efficiency is achieved through optimized parameter utilization, allowing QwQ-32B to perform complex tasks such as mathematical reasoning, coding, and general problem-solving with fewer resources. The model supports a context length of up to 32,000 tokens, enabling it to process extensive input data effectively. QwQ-32B is accessible via Alibaba's chatbot service, Qwen Chat, and is open sourced under the Apache 2.0 license, promoting collaboration and further development within the AI community.
  • 34
    Qwen3-VL

    Qwen3-VL

    Alibaba

    Qwen3-VL is the newest vision-language model in the Qwen family (by Alibaba Cloud), designed to fuse powerful text understanding/generation with advanced visual and video comprehension into one unified multimodal model. It accepts inputs in mixed modalities, text, images, and video, and handles long, interleaved contexts natively (up to 256 K tokens, with extensibility beyond). Qwen3-VL delivers major advances in spatial reasoning, visual perception, and multimodal reasoning; the model architecture incorporates several innovations such as Interleaved-MRoPE (for robust spatio-temporal positional encoding), DeepStack (to leverage multi-level features from its Vision Transformer backbone for refined image-text alignment), and text–timestamp alignment (for precise reasoning over video content and temporal events). These upgrades enable Qwen3-VL to interpret complex scenes, follow dynamic video sequences, read and reason about visual layouts.
  • 35
    Qwen Code
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results on Agentic Coding, Browser‑Use, and Tool‑Use tasks comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and more.
  • 36
    Qwen3-Coder
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning, scaling test‑case generation for diverse coding challenges, and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and environment variables.
  • 37
    Olmo 3
    Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.
  • 38
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
  • 39
    Alibaba Cloud Model Studio
    Model Studio is Alibaba Cloud’s one-stop generative AI platform that lets developers build intelligent, business-aware applications using industry-leading foundation models like Qwen-Max, Qwen-Plus, Qwen-Turbo, the Qwen-2/3 series, visual-language models (Qwen-VL/Omni), and the video-focused Wan series. Users can access these powerful GenAI models through familiar OpenAI-compatible APIs or purpose-built SDKs, no infrastructure setup required. It supports a full development workflow, experiment with models in the playground, perform real-time and batch inferences, fine-tune with tools like SFT or LoRA, then evaluate, compress, accelerate deployment, and monitor performance, all within an isolated Virtual Private Cloud (VPC) for enterprise-grade security. Customization is simplified via one-click Retrieval-Augmented Generation (RAG), enabling integration of business data into model outputs. Visual, template-driven interfaces facilitate prompt engineering and application design.
  • 40
    Qwen2-VL

    Qwen2-VL

    Alibaba

    Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of: SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images
  • 41
    Qwen2.5-VL-32B
    Qwen2.5-VL-32B is a state-of-the-art AI model designed for multimodal tasks, offering advanced capabilities in both text and image reasoning. It builds upon the earlier Qwen2.5-VL series, improving response quality with more human-like, formatted answers. The model excels in mathematical reasoning, fine-grained image understanding, and complex, multi-step reasoning tasks, such as those found in MathVista and MMMU benchmarks. Its superior performance has been demonstrated in comparison to other models, outperforming the larger Qwen2-VL-72B in certain areas. With improved image parsing and visual logic deduction, Qwen2.5-VL-32B provides a detailed, accurate analysis of images and can generate responses based on complex visual inputs. It has been optimized for both text and image tasks, making it ideal for applications requiring sophisticated reasoning and understanding across different media.
  • 42
    Qwen Chat

    Qwen Chat

    Alibaba

    Qwen Chat is a versatile and powerful AI platform developed by Alibaba, offering an array of functionalities through a user-friendly web interface. It integrates multiple advanced Qwen AI models, allowing users to engage in text-based conversations, generate images and videos, perform web searches, and utilize various tools for enhanced productivity. With features like document and image processing, HTML preview for coding tasks, and the ability to create and test artifacts directly within the chat, Qwen Chat caters to developers, researchers, and AI enthusiasts. Users can switch between models seamlessly to fit different needs, from general conversation to specialized coding or vision tasks. The platform promises future updates including voice interaction, making it an evolving tool for diverse AI applications.
  • 43
    Qwen2.5-1M

    Qwen2.5-1M

    Alibaba

    Qwen2.5-1M is an open-source language model developed by the Qwen team, designed to handle context lengths of up to one million tokens. This release includes two model variants, Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, marking the first time Qwen models have been upgraded to support such extensive context lengths. To facilitate efficient deployment, the team has also open-sourced an inference framework based on vLLM, integrated with sparse attention methods, enabling processing of 1M-token inputs with a 3x to 7x speed improvement. Comprehensive technical details, including design insights and ablation experiments, are available in the accompanying technical report.
  • 44
    Qwen

    Qwen

    Alibaba

    Qwen is a powerful, free AI assistant built on the advanced Qwen model series, designed to help anyone with creativity, research, problem-solving, and everyday tasks. While Qwen Chat is the main interface for most users, Qwen itself powers a broad range of intelligent capabilities including image generation, deep research, website creation, advanced reasoning, and context-aware search. Its multimodal intelligence enables Qwen to understand and process text, images, audio, and video simultaneously for richer insights. Qwen is available on web, desktop, and mobile, ensuring seamless access across all devices. For developers, the Qwen API provides OpenAI-compatible endpoints, making integration simple and allowing Qwen’s intelligence to power apps, services, and automation. Whether you're chatting through Qwen Chat or building with the Qwen API, Qwen delivers fast, flexible, and highly capable AI support.
  • 45
    Qwen2.5-VL

    Qwen2.5-VL

    Alibaba

    Qwen2.5-VL is the latest vision-language model from the Qwen series, representing a significant advancement over its predecessor, Qwen2-VL. This model excels in visual understanding, capable of recognizing a wide array of objects, including text, charts, icons, graphics, and layouts within images. It functions as a visual agent, capable of reasoning and dynamically directing tools, enabling applications such as computer and phone usage. Qwen2.5-VL can comprehend videos exceeding one hour in length and can pinpoint relevant segments within them. Additionally, it accurately localizes objects in images by generating bounding boxes or points and provides stable JSON outputs for coordinates and attributes. The model also supports structured outputs for data like scanned invoices, forms, and tables, benefiting sectors such as finance and commerce. Available in base and instruct versions across 3B, 7B, and 72B sizes, Qwen2.5-VL is accessible through platforms like Hugging Face and ModelScope.
  • 46
    QwQ-Max-Preview
    QwQ-Max-Preview is an advanced AI model built on the Qwen2.5-Max architecture, designed to excel in deep reasoning, mathematical problem-solving, coding, and agent-related tasks. This preview version offers a sneak peek at its capabilities, which include improved performance in a wide range of general-domain tasks and the ability to handle complex workflows. QwQ-Max-Preview is slated for an official open-source release under the Apache 2.0 license, offering further advancements and refinements in its full version. It also paves the way for a more accessible AI ecosystem, with the upcoming launch of the Qwen Chat app and smaller variants of the model like QwQ-32B, aimed at developers seeking local deployment options.
  • 47
    MiniMax M1

    MiniMax M1

    MiniMax

    MiniMax‑M1 is a large‑scale hybrid‑attention reasoning model released by MiniMax AI under the Apache 2.0 license. It supports an unprecedented 1 million‑token context window and up to 80,000-token outputs, enabling extended reasoning across long documents. Trained using large‑scale reinforcement learning with a novel CISPO algorithm, MiniMax‑M1 completed full training on 512 H800 GPUs in about three weeks. It achieves state‑of‑the‑art performance on benchmarks in mathematics, coding, software engineering, tool usage, and long‑context understanding, matching or outperforming leading models. Two model variants are available (40K and 80K thinking budgets), with weights and deployment scripts provided via GitHub and Hugging Face.
  • 48
    GLM-4.5
    GLM‑4.5 is Z.ai’s latest flagship model in the GLM family, engineered with 355 billion total parameters (32 billion active) and a companion GLM‑4.5‑Air variant (106 billion total, 12 billion active) to unify advanced reasoning, coding, and agentic capabilities in one architecture. It operates in a “thinking” mode for complex, multi‑step reasoning and tool use, and a “non‑thinking” mode for instant responses, supporting up to 128 K token context length and native function calling. Available via the Z.ai chat platform and API, with open weights on HuggingFace and ModelScope, GLM‑4.5 ingests diverse inputs to solve general problem‑solving, common‑sense reasoning, coding from scratch or within existing projects, and end‑to‑end agent workflows such as web browsing and slide generation. Built on a Mixture‑of‑Experts design with loss‑free balance routing, grouped‑query attention, and an MTP layer for speculative decoding, it delivers enterprise‑grade performance.
  • 49
    Qwen2.5-Coder
    Qwen2.5-Coder-32B-Instruct has become the current SOTA open source code model, matching the coding capabilities of GPT-4o. While demonstrating strong and comprehensive coding abilities, it also possesses good general and mathematical skills. As of now, Qwen2.5-Coder has covered six mainstream model sizes to meet the needs of different developers. We explore the practicality of Qwen2.5-Coder in two scenarios, including code assistants and artifacts, with some examples showcasing the potential applications of Qwen2.5-Coder in real-world scenarios. Qwen2.5-Coder-32B-Instruct, as the flagship model of this open source release, has achieved the best performance among open source models on multiple popular code generation benchmarks and has competitive performance with GPT-4o. Code repair is an important programming skill. Qwen2.5-Coder-32B-Instruct can help users fix errors in their code, making programming more efficient.
  • 50
    Qwen3-Omni

    Qwen3-Omni

    Alibaba

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. To reduce latency, especially in audio/video streaming, Talker predicts discrete speech codecs via a multi-codebook scheme and replaces heavier diffusion approaches.