Alternatives to Qwen3-Max-Thinking

Compare Qwen3-Max-Thinking alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Qwen3-Max-Thinking in 2026. Compare features, ratings, user reviews, pricing, and more from Qwen3-Max-Thinking competitors and alternatives in order to make an informed decision for your business.

  • 1
    Kimi K2.5

    Kimi K2.5

    Moonshot AI

    Kimi K2.5 is a next-generation multimodal AI model designed for advanced reasoning, coding, and visual understanding tasks. It features a native multimodal architecture that supports both text and visual inputs, enabling image and video comprehension alongside natural language processing. Kimi K2.5 delivers open-source state-of-the-art performance in agent workflows, software development, and general intelligence tasks. The model offers ultra-long context support with a 256K token window, making it suitable for large documents and complex conversations. It includes long-thinking capabilities that allow multi-step reasoning and tool invocation for solving challenging problems. Kimi K2.5 is fully compatible with the OpenAI API format, allowing developers to switch seamlessly with minimal changes. With strong performance, flexibility, and developer-focused tooling, Kimi K2.5 is built for production-grade AI applications.
  • 2
    Qwen3-Max

    Qwen3-Max

    Alibaba

    Qwen3-Max is Alibaba’s latest trillion-parameter large language model, designed to push performance in agentic tasks, coding, reasoning, and long-context processing. It is built atop the Qwen3 family and benefits from the architectural, training, and inference advances introduced there; mixing thinker and non-thinker modes, a “thinking budget” mechanism, and support for dynamic mode switching based on complexity. The model reportedly processes extremely long inputs (hundreds of thousands of tokens), supports tool invocation, and exhibits strong performance on benchmarks in coding, multi-step reasoning, and agent benchmarks (e.g., Tau2-Bench). While its initial variant emphasizes instruction following (non-thinking mode), Alibaba plans to bring reasoning capabilities online to enable autonomous agent behavior. Qwen3-Max inherits multilingual support and extensive pretraining on trillions of tokens, and it is delivered via API interfaces compatible with OpenAI-style functions.
  • 3
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
  • 4
    Qwen3

    Qwen3

    Alibaba

    Qwen3, the latest iteration of the Qwen family of large language models, introduces groundbreaking features that enhance performance across coding, math, and general capabilities. With models like the Qwen3-235B-A22B and Qwen3-30B-A3B, Qwen3 achieves impressive results compared to top-tier models, thanks to its hybrid thinking modes that allow users to control the balance between deep reasoning and quick responses. The platform supports 119 languages and dialects, making it an ideal choice for global applications. Its pre-training process, which uses 36 trillion tokens, enables robust performance, and advanced reinforcement learning (RL) techniques continue to refine its capabilities. Available on platforms like Hugging Face and ModelScope, Qwen3 offers a powerful tool for developers and researchers working in diverse fields.
  • 5
    QwQ-32B

    QwQ-32B

    Alibaba

    ​QwQ-32B is an advanced reasoning model developed by Alibaba Cloud's Qwen team, designed to enhance AI's problem-solving capabilities. With 32 billion parameters, it achieves performance comparable to state-of-the-art models like DeepSeek's R1, which has 671 billion parameters. This efficiency is achieved through optimized parameter utilization, allowing QwQ-32B to perform complex tasks such as mathematical reasoning, coding, and general problem-solving with fewer resources. The model supports a context length of up to 32,000 tokens, enabling it to process extensive input data effectively. QwQ-32B is accessible via Alibaba's chatbot service, Qwen Chat, and is open sourced under the Apache 2.0 license, promoting collaboration and further development within the AI community.
  • 6
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
  • 7
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
  • 8
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
  • 9
    Qwen3-VL

    Qwen3-VL

    Alibaba

    Qwen3-VL is the newest vision-language model in the Qwen family (by Alibaba Cloud), designed to fuse powerful text understanding/generation with advanced visual and video comprehension into one unified multimodal model. It accepts inputs in mixed modalities, text, images, and video, and handles long, interleaved contexts natively (up to 256 K tokens, with extensibility beyond). Qwen3-VL delivers major advances in spatial reasoning, visual perception, and multimodal reasoning; the model architecture incorporates several innovations such as Interleaved-MRoPE (for robust spatio-temporal positional encoding), DeepStack (to leverage multi-level features from its Vision Transformer backbone for refined image-text alignment), and text–timestamp alignment (for precise reasoning over video content and temporal events). These upgrades enable Qwen3-VL to interpret complex scenes, follow dynamic video sequences, read and reason about visual layouts.
  • 10
    CodeQwen

    CodeQwen

    Alibaba

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
  • 11
    Qwen

    Qwen

    Alibaba

    Qwen is a powerful, free AI assistant built on the advanced Qwen model series, designed to help anyone with creativity, research, problem-solving, and everyday tasks. While Qwen Chat is the main interface for most users, Qwen itself powers a broad range of intelligent capabilities including image generation, deep research, website creation, advanced reasoning, and context-aware search. Its multimodal intelligence enables Qwen to understand and process text, images, audio, and video simultaneously for richer insights. Qwen is available on web, desktop, and mobile, ensuring seamless access across all devices. For developers, the Qwen API provides OpenAI-compatible endpoints, making integration simple and allowing Qwen’s intelligence to power apps, services, and automation. Whether you're chatting through Qwen Chat or building with the Qwen API, Qwen delivers fast, flexible, and highly capable AI support.
  • 12
    Qwen2-VL

    Qwen2-VL

    Alibaba

    Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of: SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images
  • 13
    Qwen2.5-VL-32B
    Qwen2.5-VL-32B is a state-of-the-art AI model designed for multimodal tasks, offering advanced capabilities in both text and image reasoning. It builds upon the earlier Qwen2.5-VL series, improving response quality with more human-like, formatted answers. The model excels in mathematical reasoning, fine-grained image understanding, and complex, multi-step reasoning tasks, such as those found in MathVista and MMMU benchmarks. Its superior performance has been demonstrated in comparison to other models, outperforming the larger Qwen2-VL-72B in certain areas. With improved image parsing and visual logic deduction, Qwen2.5-VL-32B provides a detailed, accurate analysis of images and can generate responses based on complex visual inputs. It has been optimized for both text and image tasks, making it ideal for applications requiring sophisticated reasoning and understanding across different media.
  • 14
    Qwen2.5-VL

    Qwen2.5-VL

    Alibaba

    Qwen2.5-VL is the latest vision-language model from the Qwen series, representing a significant advancement over its predecessor, Qwen2-VL. This model excels in visual understanding, capable of recognizing a wide array of objects, including text, charts, icons, graphics, and layouts within images. It functions as a visual agent, capable of reasoning and dynamically directing tools, enabling applications such as computer and phone usage. Qwen2.5-VL can comprehend videos exceeding one hour in length and can pinpoint relevant segments within them. Additionally, it accurately localizes objects in images by generating bounding boxes or points and provides stable JSON outputs for coordinates and attributes. The model also supports structured outputs for data like scanned invoices, forms, and tables, benefiting sectors such as finance and commerce. Available in base and instruct versions across 3B, 7B, and 72B sizes, Qwen2.5-VL is accessible through platforms like Hugging Face and ModelScope.
  • 15
    Qwen2.5-1M

    Qwen2.5-1M

    Alibaba

    Qwen2.5-1M is an open-source language model developed by the Qwen team, designed to handle context lengths of up to one million tokens. This release includes two model variants, Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, marking the first time Qwen models have been upgraded to support such extensive context lengths. To facilitate efficient deployment, the team has also open-sourced an inference framework based on vLLM, integrated with sparse attention methods, enabling processing of 1M-token inputs with a 3x to 7x speed improvement. Comprehensive technical details, including design insights and ablation experiments, are available in the accompanying technical report.
  • 16
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
  • 17
    QwQ-Max-Preview
    QwQ-Max-Preview is an advanced AI model built on the Qwen2.5-Max architecture, designed to excel in deep reasoning, mathematical problem-solving, coding, and agent-related tasks. This preview version offers a sneak peek at its capabilities, which include improved performance in a wide range of general-domain tasks and the ability to handle complex workflows. QwQ-Max-Preview is slated for an official open-source release under the Apache 2.0 license, offering further advancements and refinements in its full version. It also paves the way for a more accessible AI ecosystem, with the upcoming launch of the Qwen Chat app and smaller variants of the model like QwQ-32B, aimed at developers seeking local deployment options.
  • 18
    Kimi K2 Thinking

    Kimi K2 Thinking

    Moonshot AI

    Kimi K2 Thinking is an advanced open source reasoning model developed by Moonshot AI, designed specifically for long-horizon, multi-step workflows where the system interleaves chain-of-thought processes with tool invocation across hundreds of sequential tasks. The model uses a mixture-of-experts architecture with a total of 1 trillion parameters, yet only about 32 billion parameters are activated per inference pass, optimizing efficiency while maintaining vast capacity. It supports a context window of up to 256,000 tokens, enabling the handling of extremely long inputs and reasoning chains without losing coherence. Native INT4 quantization is built in, which reduces inference latency and memory usage without performance degradation. Kimi K2 Thinking is explicitly built for agentic workflows; it can autonomously call external tools, manage sequential logic steps (up to and typically between 200-300 tool calls in a single chain), and maintain consistent reasoning.
  • 19
    Alibaba Cloud Model Studio
    Model Studio is Alibaba Cloud’s one-stop generative AI platform that lets developers build intelligent, business-aware applications using industry-leading foundation models like Qwen-Max, Qwen-Plus, Qwen-Turbo, the Qwen-2/3 series, visual-language models (Qwen-VL/Omni), and the video-focused Wan series. Users can access these powerful GenAI models through familiar OpenAI-compatible APIs or purpose-built SDKs, no infrastructure setup required. It supports a full development workflow, experiment with models in the playground, perform real-time and batch inferences, fine-tune with tools like SFT or LoRA, then evaluate, compress, accelerate deployment, and monitor performance, all within an isolated Virtual Private Cloud (VPC) for enterprise-grade security. Customization is simplified via one-click Retrieval-Augmented Generation (RAG), enabling integration of business data into model outputs. Visual, template-driven interfaces facilitate prompt engineering and application design.
  • 20
    Sky-T1

    Sky-T1

    NovaSky

    Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.
  • 21
    Tülu 3
    Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
  • 22
    DeepScaleR

    DeepScaleR

    Agentica Project

    DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.
  • 23
    Qwen3-TTS

    Qwen3-TTS

    Alibaba

    Qwen3-TTS is an open source series of advanced text-to-speech models developed by the Qwen team at Alibaba Cloud under the Apache-2.0 license, offering stable, expressive, and real-time speech generation with features such as voice cloning, voice design, and fine-grained control of prosody and acoustic attributes. The models support 10 major languages, including Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, and Italian, and multiple dialectal voice profiles with adaptive control over tone, speaking rate, and emotional expression based on text semantics and instructions. Qwen3-TTS uses efficient tokenization and a dual-track architecture that enables ultra-low-latency streaming synthesis (first audio packet in ~97 ms), making it suitable for interactive and real-time use cases, and includes a range of models with different capabilities (e.g., rapid 3-second voice cloning, custom voice timbres, and instruction-based voice design).
  • 24
    GPT-5.2 Thinking
    GPT-5.2 Thinking is the highest-capability configuration in OpenAI’s GPT-5.2 model family, engineered for deep, expert-level reasoning, complex task execution, and advanced problem solving across long contexts and professional domains. Built on the foundational GPT-5.2 architecture with improvements in grounding, stability, and reasoning quality, this variant applies more compute and reasoning effort to generate responses that are more accurate, structured, and contextually rich when handling highly intricate workflows, multi-step analysis, and domain-specific challenges. GPT-5.2 Thinking excels at tasks that require sustained logical coherence, such as detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and sophisticated technical writing, and it outperforms lighter variants on benchmarks that test professional skills and deep comprehension.
  • 25
    Qwen3-Coder
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning, scaling test‑case generation for diverse coding challenges, and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and environment variables.
  • 26
    Grok 4.1 Thinking
    Grok 4.1 Thinking is xAI’s advanced reasoning-focused AI model designed for deeper analysis, reflection, and structured problem-solving. It uses explicit thinking tokens to reason through complex prompts before delivering a response, resulting in more accurate and context-aware outputs. The model excels in tasks that require multi-step logic, nuanced understanding, and thoughtful explanations. Grok 4.1 Thinking demonstrates a strong, coherent personality while maintaining analytical rigor and reliability. It has achieved the top overall ranking on the LMArena Text Leaderboard, reflecting strong human preference in blind evaluations. The model also shows leading performance in emotional intelligence and creative reasoning benchmarks. Grok 4.1 Thinking is built for users who value clarity, depth, and defensible reasoning in AI interactions.
  • 27
    GLM-4.5
    GLM‑4.5 is Z.ai’s latest flagship model in the GLM family, engineered with 355 billion total parameters (32 billion active) and a companion GLM‑4.5‑Air variant (106 billion total, 12 billion active) to unify advanced reasoning, coding, and agentic capabilities in one architecture. It operates in a “thinking” mode for complex, multi‑step reasoning and tool use, and a “non‑thinking” mode for instant responses, supporting up to 128 K token context length and native function calling. Available via the Z.ai chat platform and API, with open weights on HuggingFace and ModelScope, GLM‑4.5 ingests diverse inputs to solve general problem‑solving, common‑sense reasoning, coding from scratch or within existing projects, and end‑to‑end agent workflows such as web browsing and slide generation. Built on a Mixture‑of‑Experts design with loss‑free balance routing, grouped‑query attention, and an MTP layer for speculative decoding, it delivers enterprise‑grade performance.
  • 28
    GLM-4.7-Flash
    GLM-4.7 Flash is a lightweight variant of GLM-4.7, Z.ai’s flagship large language model designed for advanced coding, reasoning, and multi-step task execution with strong agentic performance and a very large context window. It is an MoE-based model optimized for efficient inference that balances performance and resource use, enabling deployment on local machines with moderate memory requirements while maintaining deep reasoning, coding, and agentic task abilities. GLM-4.7 itself advances over earlier generations with enhanced programming capabilities, stable multi-step reasoning, context preservation across turns, and improved tool-calling workflows, and supports very long context lengths (up to ~200 K tokens) for complex tasks that span large inputs or outputs. The Flash variant retains many of these strengths in a smaller footprint, offering competitive benchmark performance in coding and reasoning tasks for models in its size class.
  • 29
    GPT-5.1 Thinking
    GPT-5.1 Thinking is the advanced reasoning model variant in the GPT-5.1 series, designed to more precisely allocate “thinking time” based on prompt complexity, responding faster to simpler requests and spending more effort on difficult problems. On a representative task distribution, it is roughly twice as fast on the fastest tasks and twice as slow on the slowest compared with its predecessor. Its responses are crafted to be clearer, with less jargon and fewer undefined terms, making deep analytical work more accessible and understandable. The model dynamically adjusts its reasoning depth, achieving a better balance between speed and thoroughness, particularly when dealing with technical concepts or multi-step questions. By combining high reasoning capacity with improved clarity, GPT-5.1 Thinking offers a powerful tool for tackling complex tasks, such as detailed analysis, coding, research, or technical explanations, while reducing unnecessary latency for routine queries.
  • 30
    GPT-5.2

    GPT-5.2

    OpenAI

    GPT-5.2 is the newest evolution in the GPT-5 series, engineered to deliver even greater intelligence, adaptability, and conversational depth. This release introduces enhanced model variants that refine how ChatGPT reasons, communicates, and responds to complex user intent. GPT-5.2 Instant remains the primary, high-usage model—now faster, more context-aware, and more precise in following instructions. GPT-5.2 Thinking takes advanced reasoning further, offering clearer step-by-step logic, improved consistency on multi-stage problems, and more efficient handling of long or intricate tasks. The system automatically routes each query to the most suitable variant, ensuring optimal performance without requiring user selection. Beyond raw intelligence gains, GPT-5.2 emphasizes more natural dialogue flow, stronger intent alignment, and a smoother, more humanlike communication style.
  • 31
    Qwen Chat

    Qwen Chat

    Alibaba

    Qwen Chat is a versatile and powerful AI platform developed by Alibaba, offering an array of functionalities through a user-friendly web interface. It integrates multiple advanced Qwen AI models, allowing users to engage in text-based conversations, generate images and videos, perform web searches, and utilize various tools for enhanced productivity. With features like document and image processing, HTML preview for coding tasks, and the ability to create and test artifacts directly within the chat, Qwen Chat caters to developers, researchers, and AI enthusiasts. Users can switch between models seamlessly to fit different needs, from general conversation to specialized coding or vision tasks. The platform promises future updates including voice interaction, making it an evolving tool for diverse AI applications.
  • 32
    Olmo 3
    Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.
  • 33
    MiMo-V2-Flash

    MiMo-V2-Flash

    Xiaomi Technology

    MiMo-V2-Flash is an open weight large language model developed by Xiaomi based on a Mixture-of-Experts (MoE) architecture that blends high performance with inference efficiency. It has 309 billion total parameters but activates only 15 billion active parameters per inference, letting it balance reasoning quality and computational efficiency while supporting extremely long context handling, for tasks like long-document understanding, code generation, and multi-step agent workflows. It incorporates a hybrid attention mechanism that interleaves sliding-window and global attention layers to reduce memory usage and maintain long-range comprehension, and it uses a Multi-Token Prediction (MTP) design that accelerates inference by processing batches of tokens in parallel. MiMo-V2-Flash delivers very fast generation speeds (up to ~150 tokens/second) and is optimized for agentic applications requiring sustained reasoning and multi-turn interactions.
  • 34
    GPT-5.1 Pro
    GPT-5.1 Pro is the highest-performance version of the GPT-5.1 model family, designed for research-grade reasoning and advanced analytical workloads. It delivers deeper, more structured thinking, making it ideal for complex problem-solving across coding, science, finance, law, and technical research. Unlike the Instant and Thinking versions, GPT-5.1 Pro is built to maintain accuracy under heavy cognitive load, producing clearer logic and more reliable multi-step reasoning. Pro users also gain access to extended context windows, allowing significantly longer inputs and deeper information processing. While it supports the full range of ChatGPT features, GPT-5.1 Pro is optimized for precision, rigor, and high-stakes tasks. It is available exclusively to ChatGPT Pro and Business customers.
  • 35
    K2 Think

    K2 Think

    Institute of Foundation Models

    K2 Think is an open source advanced reasoning model developed collaboratively by the Institute of Foundation Models at MBZUAI and G42. Despite only having 32 billion parameters, it delivers performance comparable to flagship models with many more parameters. It excels in mathematical reasoning, achieving top scores on competitive benchmarks such as AIME ’24/’25, HMMT ’25, and OMNI-Math-HARD. K2 Think is part of a suite of UAE-developed open models, alongside Jais (Arabic), NANDA (Hindi), and SHERKALA (Kazakh), and builds on the foundation laid by K2-65B, the fully reproducible open source foundation model released in 2024. The model is designed to be open, fast, and flexible, offering a web app interface for exploration, and with its efficiency in parameter positioning, it is a breakthrough in compact architectures for advanced AI reasoning.
  • 36
    DeepSWE

    DeepSWE

    Agentica Project

    DeepSWE is a fully open source, state-of-the-art coding agent built on top of the Qwen3-32B foundation model and trained exclusively via reinforcement learning (RL), without supervised finetuning or distillation from proprietary models. It is developed using rLLM, Agentica’s open source RL framework for language agents. DeepSWE operates as an agent; it interacts with a simulated development environment (via the R2E-Gym environment) using a suite of tools (file editor, search, shell-execution, submit/finish), enabling it to navigate codebases, edit multiple files, compile/run tests, and iteratively produce patches or complete engineering tasks. DeepSWE exhibits emergent behaviors beyond simple code generation; when presented with bugs or feature requests, the agent reasons about edge cases, seeks existing tests in the repository, proposes patches, writes extra tests for regressions, and dynamically adjusts its “thinking” effort.
  • 37
    GLM-4.1V

    GLM-4.1V

    Zhipu AI

    GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.
  • 38
    Qwen2.5-Coder
    Qwen2.5-Coder-32B-Instruct has become the current SOTA open source code model, matching the coding capabilities of GPT-4o. While demonstrating strong and comprehensive coding abilities, it also possesses good general and mathematical skills. As of now, Qwen2.5-Coder has covered six mainstream model sizes to meet the needs of different developers. We explore the practicality of Qwen2.5-Coder in two scenarios, including code assistants and artifacts, with some examples showcasing the potential applications of Qwen2.5-Coder in real-world scenarios. Qwen2.5-Coder-32B-Instruct, as the flagship model of this open source release, has achieved the best performance among open source models on multiple popular code generation benchmarks and has competitive performance with GPT-4o. Code repair is an important programming skill. Qwen2.5-Coder-32B-Instruct can help users fix errors in their code, making programming more efficient.
  • 39
    DeepCoder

    DeepCoder

    Agentica Project

    DeepCoder is a fully open source code-reasoning and generation model released by Agentica Project in collaboration with Together AI. It is fine-tuned from DeepSeek-R1-Distilled-Qwen-14B using distributed reinforcement learning, achieving a 60.6% accuracy on LiveCodeBench (representing an 8% improvement over the base), a performance level that matches that of proprietary models such as o3-mini (2025-01-031 Low) and o1 while using only 14 billion parameters. It was trained over 2.5 weeks on 32 H100 GPUs with a curated dataset of roughly 24,000 coding problems drawn from verified sources (including TACO-Verified, PrimeIntellect SYNTHETIC-1, and LiveCodeBench submissions), each problem requiring a verifiable solution and at least five unit tests to ensure reliability for RL training. To handle long-range context, DeepCoder employs techniques such as iterative context lengthening and overlong filtering.
  • 40
    Gemini 2.0 Flash Thinking
    Gemini 2.0 Flash Thinking is an advanced AI model developed by Google DeepMind, designed to enhance reasoning capabilities by explicitly displaying its thought processes. This transparency allows the model to tackle complex problems more effectively and provides users with clear explanations of its decision-making steps. By showcasing its internal reasoning, Gemini 2.0 Flash Thinking not only improves performance but also offers greater explainability, making it a valuable tool for applications requiring deep understanding and trust in AI-driven solutions.
  • 41
    Grok 3 Think
    Grok 3 Think, the latest iteration of xAI's AI model, is designed to enhance reasoning capabilities using advanced reinforcement learning. It can think through complex problems for extended periods, from seconds to minutes, improving its answers by backtracking, exploring alternatives, and refining its approach. This model, trained on an unprecedented scale, delivers remarkable performance in tasks such as mathematics, coding, and world knowledge, showing impressive results in competitions like the American Invitational Mathematics Examination. Grok 3 Think not only provides accurate solutions but also offers transparency by allowing users to inspect the reasoning behind its decisions, setting a new standard for AI problem-solving.
  • 42
    Qwen Code
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results on Agentic Coding, Browser‑Use, and Tool‑Use tasks comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and more.
  • 43
    OpenAI o1
    OpenAI o1 represents a new series of AI models designed by OpenAI, focusing on enhanced reasoning capabilities. These models, including o1-preview and o1-mini, are trained using a novel reinforcement learning approach to spend more time "thinking" through problems before providing answers. This approach allows o1 to excel in complex problem-solving tasks in areas like coding, mathematics, and science, outperforming previous models like GPT-4o in certain benchmarks. The o1 series aims to tackle challenges that require deeper thought processes, marking a significant step towards AI systems that can reason more like humans, although it's still in the preview stage with ongoing improvements and evaluations.
  • 44
    Gemini 2.5 Pro Deep Think
    Gemini 2.5 Pro Deep Think is a cutting-edge AI model designed to enhance the reasoning capabilities of machine learning models, offering improved performance and accuracy. This advanced version of the Gemini 2.5 series incorporates a feature called "Deep Think," allowing the model to reason through its thoughts before responding. It excels in coding, handling complex prompts, and multimodal tasks, offering smarter, more efficient execution. Whether for coding tasks, visual reasoning, or handling long-context input, Gemini 2.5 Pro Deep Think provides unparalleled performance. It also introduces features like native audio for more expressive conversations and optimizations that make it faster and more accurate than previous versions.
  • 45
    GPT-5.1

    GPT-5.1

    OpenAI

    GPT-5.1 is the latest update in the GPT-5 series, designed to make ChatGPT dramatically smarter and more conversational. The release introduces two distinct model variants: GPT-5.1 Instant, which is described as the most-used model and is now warmer, better at following instructions, and more intelligent; and GPT-5.1 Thinking, which is the advanced reasoning engine that’s been tuned to be easier to understand, faster on straightforward tasks, and more persistent on complex ones. Users' queries are now routed automatically to the variant best-suited to the task. The update emphasizes not just improved raw intelligence but also enhanced communication style; the models are tuned to be more natural, enjoyable to talk to, and better aligned with user intents. The system card addendum notes that GPT-5.1 Instant uses “adaptive reasoning” that lets it decide when to think more deeply before responding, while GPT-5.1 Thinking adapts its thinking time accurately to the question at hand.
  • 46
    Ministral 3B

    Ministral 3B

    Mistral AI

    Mistral AI introduced two state-of-the-art models for on-device computing and edge use cases, named "les Ministraux": Ministral 3B and Ministral 8B. These models set a new frontier in knowledge, commonsense reasoning, function-calling, and efficiency in the sub-10B category. They can be used or tuned for various applications, from orchestrating agentic workflows to creating specialist task workers. Both models support up to 128k context length (currently 32k on vLLM), and Ministral 8B features a special interleaved sliding-window attention pattern for faster and memory-efficient inference. These models were built to provide a compute-efficient and low-latency solution for scenarios such as on-device translation, internet-less smart assistants, local analytics, and autonomous robotics. Used in conjunction with larger language models like Mistral Large, les Ministraux also serve as efficient intermediaries for function-calling in multi-step agentic workflows.
  • 47
    MonoQwen-Vision
    MonoQwen2-VL-v0.1 is the first visual document reranker designed to enhance the quality of retrieved visual documents in Retrieval-Augmented Generation (RAG) pipelines. Traditional RAG approaches rely on converting documents into text using Optical Character Recognition (OCR), which can be time-consuming and may result in loss of information, especially for non-textual elements like graphs and tables. MonoQwen2-VL-v0.1 addresses these limitations by leveraging Visual Language Models (VLMs) that process images directly, eliminating the need for OCR and preserving the integrity of visual content. This reranker operates in a two-stage pipeline, initially, it uses separate encoding to generate a pool of candidate documents, followed by a cross-encoding model that reranks these candidates based on their relevance to the query. By training a Low-Rank Adaptation (LoRA) on top of the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 achieves high performance without significant memory overhead.
  • 48
    Amazon Nova 2 Lite
    Nova 2 Lite is a lightweight, high-speed reasoning model designed to handle everyday AI workloads across text, images, and video. It can generate clear, context-aware responses and lets users fine-tune how much internal reasoning the model performs before producing an answer. This adjustable “thinking depth” gives teams the flexibility to choose faster replies or more detailed problem-solving depending on the task. It stands out for customer service bots, automated document handling, and general business workflow support. Nova 2 Lite delivers strong performance across standard evaluation tests. It performs on par with or better than comparable compact models in most benchmark categories, demonstrating reliable comprehension and response quality. Its strengths include interpreting complex documents, pulling accurate insights from video content, generating usable code, and delivering grounded answers based on provided information.
  • 49
    Ministral 8B

    Ministral 8B

    Mistral AI

    Mistral AI has introduced two advanced models for on-device computing and edge applications, named "les Ministraux": Ministral 3B and Ministral 8B. These models excel in knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B parameter range. They support up to 128k context length and are designed for various applications, including on-device translation, offline smart assistants, local analytics, and autonomous robotics. Ministral 8B features an interleaved sliding-window attention pattern for faster and more memory-efficient inference. Both models can function as intermediaries in multi-step agentic workflows, handling tasks like input parsing, task routing, and API calls based on user intent with low latency and cost. Benchmark evaluations indicate that les Ministraux consistently outperforms comparable models across multiple tasks. As of October 16, 2024, both models are available, with Ministral 8B priced at $0.1 per million tokens.
  • 50
    Phi-4-reasoning
    Phi-4-reasoning is a 14-billion parameter transformer-based language model optimized for complex reasoning tasks, including math, coding, algorithmic problem solving, and planning. Trained via supervised fine-tuning of Phi-4 on carefully curated "teachable" prompts and reasoning demonstrations generated using o3-mini, it generates detailed reasoning chains that effectively leverage inference-time compute. Phi-4-reasoning incorporates outcome-based reinforcement learning to produce longer reasoning traces. It outperforms significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B and approaches the performance levels of the full DeepSeek-R1 model across a wide range of reasoning tasks. Phi-4-reasoning is designed for environments with constrained computing or latency. Fine-tuned with synthetic data generated by DeepSeek-R1, it provides high-quality, step-by-step problem solving.