GPT-5.1-Codex
GPT-5.1-Codex is a specialized version of the GPT-5.1 model built for software engineering and agentic coding workflows. It is optimized for both interactive development sessions and long-horizon, autonomous execution of complex engineering tasks, such as building projects from scratch, developing features, debugging, performing large-scale refactoring, and code review. It supports tool-use, integrates naturally with developer environments, and adapts reasoning effort dynamically, moving quickly on simple tasks while spending more time on deep ones. The model is described as producing cleaner and higher-quality code outputs compared to general models, with closer adherence to developer instructions and fewer hallucinations. GPT-5.1-Codex is available via the Responses API route (rather than a standard chat API) and comes in variants including “mini” for cost-sensitive usage and “max” for the highest capability.
Learn more
GPT-5.2-Codex
GPT-5.2-Codex is OpenAI’s most advanced agentic coding model, built for complex, real-world software engineering and defensive cybersecurity work. It is a specialized version of GPT-5.2 optimized for long-horizon coding tasks such as large refactors, migrations, and feature development. The model maintains full context over extended sessions through native context compaction. GPT-5.2-Codex delivers state-of-the-art performance on benchmarks like SWE-Bench Pro and Terminal-Bench 2.0. It operates reliably across large repositories and native Windows environments. Stronger vision capabilities allow it to interpret screenshots, diagrams, and UI designs during development. GPT-5.2-Codex is designed to be a dependable partner for professional engineering workflows.
Learn more
Qwen3-VL
Qwen3-VL is the newest vision-language model in the Qwen family (by Alibaba Cloud), designed to fuse powerful text understanding/generation with advanced visual and video comprehension into one unified multimodal model. It accepts inputs in mixed modalities, text, images, and video, and handles long, interleaved contexts natively (up to 256 K tokens, with extensibility beyond). Qwen3-VL delivers major advances in spatial reasoning, visual perception, and multimodal reasoning; the model architecture incorporates several innovations such as Interleaved-MRoPE (for robust spatio-temporal positional encoding), DeepStack (to leverage multi-level features from its Vision Transformer backbone for refined image-text alignment), and text–timestamp alignment (for precise reasoning over video content and temporal events). These upgrades enable Qwen3-VL to interpret complex scenes, follow dynamic video sequences, read and reason about visual layouts.
Learn more
Grok Code Fast 1
Grok Code Fast 1 is a high-speed, economical reasoning model designed specifically for agentic coding workflows. Unlike traditional models that can feel slow in tool-based loops, it delivers near-instant responses, excelling in everyday software development tasks. Built from scratch with a programming-rich corpus and refined on real-world pull requests, it supports languages like TypeScript, Python, Java, Rust, C++, and Go. Developers can use it for everything from zero-to-one project building to precise bug fixes and codebase Q&A. With optimized inference and caching techniques, it achieves impressive responsiveness and a 90%+ cache hit rate when integrated with partners like GitHub Copilot, Cursor, and Cline. Offered at just $0.20 per million input tokens and $1.50 per million output tokens, Grok Code Fast 1 strikes a strong balance between speed, performance, and affordability.
Learn more