Vertex AI
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case.
Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection.
Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
Learn more
StackAI
StackAI is an enterprise AI automation platform to build end-to-end internal tools and processes with AI agents in a fully compliant and secure way. Designed for large organizations, it enables teams to automate complex workflows across operations, compliance, finance, IT, and support without heavy engineering.
With StackAI you can:
• Connect knowledge bases (SharePoint, Confluence, Notion, Google Drive, databases) with versioning, citations, and access controls.
• Deploy AI agents as chat assistants, advanced forms, or APIs integrated into Slack, Teams, Salesforce, HubSpot, or ServiceNow.
• Govern usage with enterprise security: SSO (Okta, Azure AD, Google), RBAC, audit logs, PII masking, data residency, and cost controls.
• Route across OpenAI, Anthropic, Google, or local LLMs with guardrails, evaluations, and testing.
• Start fast with templates for Contract Analyzer, Support Desk, RFP Response, Investment Memo Generator, and more.
Learn more
Instructor
Instructor is a tool that enables developers to extract structured data from natural language using Large Language Models (LLMs). Integrating with Python's Pydantic library allows users to define desired output structures through type hints, facilitating schema validation and seamless integration with IDEs. Instructor supports various LLM providers, including OpenAI, Anthropic, Litellm, and Cohere, offering flexibility in implementation. Its customizable nature permits the definition of validators and custom error messages, enhancing data validation processes. Instructor is trusted by engineers from platforms like Langflow, underscoring its reliability and effectiveness in managing structured outputs powered by LLMs. Instructor is powered by Pydantic, which is powered by type hints. Schema validation and prompting are controlled by type annotations; less to learn, and less code to write, and it integrates with your IDE.
Learn more