Alternatives to Phi-2
Compare Phi-2 alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Phi-2 in 2026. Compare features, ratings, user reviews, pricing, and more from Phi-2 competitors and alternatives in order to make an informed decision for your business.
-
1
Phi-3
Microsoft
A family of powerful, small language models (SLMs) with groundbreaking performance at low cost and low latency. Maximize AI capabilities, lower resource use, and ensure cost-effective generative AI deployments across your applications. Accelerate response times in real-time interactions, autonomous systems, apps requiring low latency, and other critical scenarios. Run Phi-3 in the cloud, at the edge, or on device, resulting in greater deployment and operation flexibility. Phi-3 models were developed in accordance with Microsoft AI principles: accountability, transparency, fairness, reliability and safety, privacy and security, and inclusiveness. Operate effectively in offline environments where data privacy is paramount or connectivity is limited. Generate more coherent, accurate, and contextually relevant outputs with an expanded context window. Deploy at the edge to deliver faster responses. -
2
TinyLlama
TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.Starting Price: Free -
3
Mistral 7B
Mistral AI
Mistral 7B is a 7.3-billion-parameter language model that outperforms larger models like Llama 2 13B across various benchmarks. It employs Grouped-Query Attention (GQA) for faster inference and Sliding Window Attention (SWA) to efficiently handle longer sequences. Released under the Apache 2.0 license, Mistral 7B is accessible for deployment across diverse platforms, including local environments and major cloud services. Additionally, a fine-tuned version, Mistral 7B Instruct, demonstrates enhanced performance in instruction-following tasks, surpassing models like Llama 2 13B Chat.Starting Price: Free -
4
DeepScaleR
Agentica Project
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.Starting Price: Free -
5
Pixtral Large
Mistral AI
Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.Starting Price: Free -
6
GigaChat 3 Ultra
Sberbank
GigaChat 3 Ultra is a 702-billion-parameter Mixture-of-Experts model built from scratch to deliver frontier-level reasoning, multilingual capability, and deep Russian-language fluency. It activates just 36 billion parameters per token, enabling massive scale with practical inference speeds. The model was trained on a 14-trillion-token corpus combining natural, multilingual, and high-quality synthetic data to strengthen reasoning, math, coding, and linguistic performance. Unlike modified foreign checkpoints, GigaChat 3 Ultra is entirely original—giving developers full control, modern alignment, and a dataset free of inherited limitations. Its architecture leverages MoE, MTP, and MLA to match open-source ecosystems and integrate easily with popular inference and fine-tuning tools. With leading results on Russian benchmarks and competitive performance on global tasks, GigaChat 3 Ultra represents one of the largest and most capable open-source LLMs in the world.Starting Price: Free -
7
GLM-4.1V
Zhipu AI
GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.Starting Price: Free -
8
Phi-4
Microsoft
Phi-4 is a 14B parameter state-of-the-art small language model (SLM) that excels at complex reasoning in areas such as math, in addition to conventional language processing. Phi-4 is the latest member of our Phi family of small language models and demonstrates what’s possible as we continue to probe the boundaries of SLMs. Phi-4 is currently available on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and will be available on Hugging Face. Phi-4 outperforms comparable and larger models on math related reasoning due to advancements throughout the processes, including the use of high-quality synthetic datasets, curation of high-quality organic data, and post-training innovations. Phi-4 continues to push the frontier of size vs quality. -
9
Stable LM
Stability AI
Stable LM: Stability AI Language Models. The release of Stable LM builds on our experience in open-sourcing earlier language models with EleutherAI, a nonprofit research hub. These language models include GPT-J, GPT-NeoX, and the Pythia suite, which were trained on The Pile open-source dataset. Many recent open-source language models continue to build on these efforts, including Cerebras-GPT and Dolly-2. Stable LM is trained on a new experimental dataset built on The Pile, but three times larger with 1.5 trillion tokens of content. We will release details on the dataset in due course. The richness of this dataset gives Stable LM surprisingly high performance in conversational and coding tasks, despite its small size of 3 to 7 billion parameters (by comparison, GPT-3 has 175 billion parameters). Stable LM 3B is a compact language model designed to operate on portable digital devices like handhelds and laptops, and we’re excited about its capabilities and portability.Starting Price: Free -
10
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
11
Kimi K2
Moonshot AI
Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.Starting Price: Free -
12
Qwen2
Alibaba
Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.Starting Price: Free -
13
Phi-4-reasoning
Microsoft
Phi-4-reasoning is a 14-billion parameter transformer-based language model optimized for complex reasoning tasks, including math, coding, algorithmic problem solving, and planning. Trained via supervised fine-tuning of Phi-4 on carefully curated "teachable" prompts and reasoning demonstrations generated using o3-mini, it generates detailed reasoning chains that effectively leverage inference-time compute. Phi-4-reasoning incorporates outcome-based reinforcement learning to produce longer reasoning traces. It outperforms significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B and approaches the performance levels of the full DeepSeek-R1 model across a wide range of reasoning tasks. Phi-4-reasoning is designed for environments with constrained computing or latency. Fine-tuned with synthetic data generated by DeepSeek-R1, it provides high-quality, step-by-step problem solving. -
14
Solar Pro 2
Upstage AI
Solar Pro 2 is Upstage’s latest frontier‑scale large language model, designed to power complex tasks and agent‑like workflows across domains such as finance, healthcare, and legal. Packaged in a compact 31 billion‑parameter architecture, it delivers top‑tier multilingual performance, especially in Korean, where it outperforms much larger models on benchmarks like Ko‑MMLU, Hae‑Rae, and Ko‑IFEval, while also excelling in English and Japanese. Beyond superior language understanding and generation, Solar Pro 2 offers next‑level intelligence through an advanced Reasoning Mode that significantly boosts multi‑step task accuracy on challenges ranging from general reasoning (MMLU, MMLU‑Pro, HumanEval) to complex mathematics (Math500, AIME) and software engineering (SWE‑Bench Agentless), achieving problem‑solving efficiency comparable to or exceeding that of models twice its size. Enhanced tool‑use capabilities enable the model to interact seamlessly with external APIs and data sources.Starting Price: $0.1 per 1M tokens -
15
Megatron-Turing
NVIDIA
Megatron-Turing Natural Language Generation model (MT-NLG), is the largest and the most powerful monolithic transformer English language model with 530 billion parameters. This 105-layer, transformer-based MT-NLG improves upon the prior state-of-the-art models in zero-, one-, and few-shot settings. It demonstrates unmatched accuracy in a broad set of natural language tasks such as, Completion prediction, Reading comprehension, Commonsense reasoning, Natural language inferences, Word sense disambiguation, etc. With the intent of accelerating research on the largest English language model till date and enabling customers to experiment, employ and apply such a large language model on downstream language tasks - NVIDIA is pleased to announce an Early Access program for its managed API service to MT-NLG mode. -
16
Reka Flash 3
Reka
Reka Flash 3 is a 21-billion-parameter multimodal AI model developed by Reka AI, designed to excel in general chat, coding, instruction following, and function calling. It processes and reasons with text, images, video, and audio inputs, offering a compact, general-purpose solution for various applications. Trained from scratch on diverse datasets, including publicly accessible and synthetic data, Reka Flash 3 underwent instruction tuning on curated, high-quality data to optimize performance. The final training stage involved reinforcement learning using REINFORCE Leave One-Out (RLOO) with both model-based and rule-based rewards, enhancing its reasoning capabilities. With a context length of 32,000 tokens, Reka Flash 3 performs competitively with proprietary models like OpenAI's o1-mini, making it suitable for low-latency or on-device deployments. The model's full precision requires 39GB (fp16), but it can be compressed to as small as 11GB using 4-bit quantization. -
17
ERNIE 3.0 Titan
Baidu
Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, We design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts. -
18
ChatGLM
Zhipu AI
ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. Combined with model quantization technology, users can deploy locally on consumer-grade graphics cards (only 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese Q&A and dialogue. After about 1T identifiers of Chinese and English bilingual training, supplemented by supervision and fine-tuning, feedback self-help, human feedback reinforcement learning and other technologies, ChatGLM-6B with 6.2 billion parameters has been able to generate answers that are quite in line with human preferences.Starting Price: Free -
19
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
20
Mistral Saba
Mistral AI
Mistral Saba is a 24-billion-parameter model trained on meticulously curated datasets from across the Middle East and South Asia. The model provides more accurate and relevant responses than models that are over five times its size while being significantly faster and lower cost. It can also serve as a strong base to train highly specific regional adaptations. Mistral Saba is available as an API and can be deployed locally within customers' security premises. Like the recently released Mistral Small 3, the model is lightweight and can be deployed on single-GPU systems, responding at speeds of over 150 tokens per second. In keeping with the rich cultural cross-pollination between the Middle East and South Asia, Mistral Saba supports Arabic and many Indian-origin languages and is particularly strong in South Indian-origin languages such as Tamil. This capability enhances its versatility in multinational use across these interconnected regions.Starting Price: Free -
21
Ministral 3
Mistral AI
Mistral 3 is the latest generation of open-weight AI models from Mistral AI, offering a full family of models, from small, edge-optimized versions to a flagship, large-scale multimodal model. The lineup includes three compact “Ministral 3” models (3B, 8B, and 14B parameters) designed for efficiency and deployment on constrained hardware (even laptops, drones, or edge devices), plus the powerful “Mistral Large 3,” a sparse mixture-of-experts model with 675 billion total parameters (41 billion active). The models support multimodal and multilingual tasks, not only text, but also image understanding, and have demonstrated best-in-class performance on general prompts, multilingual conversations, and multimodal inputs. The base and instruction-fine-tuned versions are released under the Apache 2.0 license, enabling broad customization and integration in enterprise and open source projects.Starting Price: Free -
22
Stable Beluga
Stability AI
Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.Starting Price: Free -
23
K2 Think
Institute of Foundation Models
K2 Think is an open source advanced reasoning model developed collaboratively by the Institute of Foundation Models at MBZUAI and G42. Despite only having 32 billion parameters, it delivers performance comparable to flagship models with many more parameters. It excels in mathematical reasoning, achieving top scores on competitive benchmarks such as AIME ’24/’25, HMMT ’25, and OMNI-Math-HARD. K2 Think is part of a suite of UAE-developed open models, alongside Jais (Arabic), NANDA (Hindi), and SHERKALA (Kazakh), and builds on the foundation laid by K2-65B, the fully reproducible open source foundation model released in 2024. The model is designed to be open, fast, and flexible, offering a web app interface for exploration, and with its efficiency in parameter positioning, it is a breakthrough in compact architectures for advanced AI reasoning.Starting Price: Free -
24
Chinchilla
Google DeepMind
Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher. -
25
StarCoder
BigCode
StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.Starting Price: Free -
26
DeepSeek R1
DeepSeek
DeepSeek-R1 is an advanced open-source reasoning model developed by DeepSeek, designed to rival OpenAI's Model o1. Accessible via web, app, and API, it excels in complex tasks such as mathematics and coding, demonstrating superior performance on benchmarks like the American Invitational Mathematics Examination (AIME) and MATH. DeepSeek-R1 employs a mixture of experts (MoE) architecture with 671 billion total parameters, activating 37 billion parameters per token, enabling efficient and accurate reasoning capabilities. This model is part of DeepSeek's commitment to advancing artificial general intelligence (AGI) through open-source innovation.Starting Price: Free -
27
Olmo 3
Ai2
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.Starting Price: Free -
28
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM is a collaborative initiative among Europe's leading AI companies and research institutions to develop a series of open-source foundation models for transparent AI in Europe. The project emphasizes transparency by openly sharing data, documentation, training, testing code, and evaluation metrics, fostering community involvement. It ensures compliance with EU regulations, aiming to provide performant large language models that align with European standards. A key focus is on linguistic and cultural diversity, extending multilingual capabilities to encompass all EU official languages and beyond. The initiative seeks to enhance access to foundational models ready for fine-tuning across various applications, expand evaluation results in multiple languages, and increase the availability of training datasets and benchmarks. Transparency is maintained throughout the training processes by sharing tools, methodologies, and intermediate results. -
29
Command A Translate
Cohere AI
Command A Translate is Cohere’s enterprise-grade machine translation model crafted to deliver secure, high-quality translation across 23 business-relevant languages. Built on a powerful 111-billion-parameter architecture with an 8K-input / 8K-output context window, it achieves industry-leading performance that surpasses models like GPT-5, DeepSeek-V3, DeepL Pro, and Google Translate across a broad suite of benchmarks. The model supports private deployments for sensitive workflows, allowing enterprises full control over their data, and introduces an innovative “Deep Translation” workflow, an agentic, multi-step refinement process that iteratively enhances translation quality for complex use cases. External validation from RWS Group confirms its excellence in challenging translation tasks. Additionally, the model’s weights are available for research via Hugging Face under a CC-BY-NC license, enabling deep customization, fine-tuning, and private deployment flexibility. -
30
Llama
Meta
Llama (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as Llama enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like Llama is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making Llama available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a Llama model card that details how we built the model in keeping with our approach to Responsible AI practices. -
31
EXAONE Deep
LG
EXAONE Deep is a series of reasoning-enhanced language models developed by LG AI Research, featuring parameter sizes of 2.4 billion, 7.8 billion, and 32 billion. These models demonstrate superior capabilities in various reasoning tasks, including math and coding benchmarks. Notably, EXAONE Deep 2.4B outperforms other models of comparable size, EXAONE Deep 7.8B surpasses both open-weight models of similar scale and the proprietary reasoning model OpenAI o1-mini, and EXAONE Deep 32B shows competitive performance against leading open-weight models. The repository provides comprehensive documentation covering performance evaluations, quickstart guides for using EXAONE Deep models with Transformers, explanations of quantized EXAONE Deep weights in AWQ and GGUF formats, and instructions for running EXAONE Deep models locally using frameworks like llama.cpp and Ollama.Starting Price: Free -
32
Amazon Nova 2 Lite
Amazon
Nova 2 Lite is a lightweight, high-speed reasoning model designed to handle everyday AI workloads across text, images, and video. It can generate clear, context-aware responses and lets users fine-tune how much internal reasoning the model performs before producing an answer. This adjustable “thinking depth” gives teams the flexibility to choose faster replies or more detailed problem-solving depending on the task. It stands out for customer service bots, automated document handling, and general business workflow support. Nova 2 Lite delivers strong performance across standard evaluation tests. It performs on par with or better than comparable compact models in most benchmark categories, demonstrating reliable comprehension and response quality. Its strengths include interpreting complex documents, pulling accurate insights from video content, generating usable code, and delivering grounded answers based on provided information. -
33
Llama 4 Behemoth
Meta
Llama 4 Behemoth is Meta's most powerful AI model to date, featuring a massive 288 billion active parameters. It excels in multimodal tasks, outperforming previous models like GPT-4.5 and Gemini 2.0 Pro across multiple STEM-focused benchmarks such as MATH-500 and GPQA Diamond. As the teacher model for the Llama 4 series, Behemoth sets the foundation for models like Llama 4 Maverick and Llama 4 Scout. While still in training, Llama 4 Behemoth demonstrates unmatched intelligence, pushing the boundaries of AI in fields like math, multilinguality, and image understanding.Starting Price: Free -
34
Azure OpenAI Service
Microsoft
Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.Starting Price: $0.0004 per 1000 tokens -
35
DeepSeek-V2
DeepSeek
DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.Starting Price: Free -
36
Baichuan-13B
Baichuan Intelligent Technology
Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.Starting Price: Free -
37
Llama 3.3
Meta
Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.Starting Price: Free -
38
Orpheus TTS
Canopy Labs
Canopy Labs has introduced Orpheus, a family of state-of-the-art speech large language models (LLMs) designed for human-level speech generation. These models are built on the Llama-3 architecture and are trained on over 100,000 hours of English speech data, enabling them to produce natural intonation, emotion, and rhythm that surpasses current state-of-the-art closed source models. Orpheus supports zero-shot voice cloning, allowing users to replicate voices without prior fine-tuning, and offers guided emotion and intonation control through simple tags. The models achieve low latency, with approximately 200ms streaming latency for real-time applications, reducible to around 100ms with input streaming. Canopy Labs has released both pre-trained and fine-tuned 3B-parameter models under the permissive Apache 2.0 license, with plans to release smaller models of 1B, 400M, and 150M parameters for use on resource-constrained devices. -
39
PanGu-Σ
Huawei
Significant advancements in the field of natural language processing, understanding, and generation have been achieved through the expansion of large language models. This study introduces a system which utilizes Ascend 910 AI processors and the MindSpore framework to train a language model with over a trillion parameters, specifically 1.085T, named PanGu-{\Sigma}. This model, which builds upon the foundation laid by PanGu-{\alpha}, takes the traditionally dense Transformer model and transforms it into a sparse one using a concept known as Random Routed Experts (RRE). The model was efficiently trained on a dataset of 329 billion tokens using a technique called Expert Computation and Storage Separation (ECSS), leading to a 6.3-fold increase in training throughput via heterogeneous computing. Experimentation indicates that PanGu-{\Sigma} sets a new standard in zero-shot learning for various downstream Chinese NLP tasks. -
40
Aya
Cohere AI
Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date. -
41
Smaug-72B
Abacus
Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.Starting Price: Free -
42
Sky-T1
NovaSky
Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.Starting Price: Free -
43
Phi-4-mini-reasoning
Microsoft
Phi-4-mini-reasoning is a 3.8-billion parameter transformer-based language model optimized for mathematical reasoning and step-by-step problem solving in environments with constrained computing or latency. Fine-tuned with synthetic data generated by the DeepSeek-R1 model, it balances efficiency with advanced reasoning ability. Trained on over one million diverse math problems spanning multiple levels of difficulty from middle school to Ph.D. level, Phi-4-mini-reasoning outperforms its base model on long sentence generation across various evaluations and surpasses larger models like OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. It features a 128K-token context window and supports function calling, enabling integration with external tools and APIs. Phi-4-mini-reasoning can be quantized using Microsoft Olive or Apple MLX Framework for deployment on edge devices such as IoT, laptops, and mobile devices. -
44
Claude Opus 4.5
Anthropic
Claude Opus 4.5 is Anthropic’s newest flagship model, delivering major improvements in reasoning, coding, agentic workflows, and real-world problem solving. It outperforms previous models and leading competitors on benchmarks such as SWE-bench, multilingual coding tests, and advanced agent evaluations. Opus 4.5 also introduces stronger safety features, including significantly higher resistance to prompt injection and improved alignment across sensitive tasks. Developers gain new controls through the Claude API—like effort parameters, context compaction, and advanced tool use—allowing for more efficient, longer-running agentic workflows. Product updates across Claude, Claude Code, the Chrome extension, and Excel integrations expand how users interact with the model for software engineering, research, and everyday productivity. Overall, Claude Opus 4.5 marks a substantial step forward in capability, reliability, and usability for developers, enterprises, and end users. -
45
Mistral Small
Mistral AI
On September 17, 2024, Mistral AI announced several key updates to enhance the accessibility and performance of their AI offerings. They introduced a free tier on "La Plateforme," their serverless platform for tuning and deploying Mistral models as API endpoints, enabling developers to experiment and prototype at no cost. Additionally, Mistral AI reduced prices across their entire model lineup, with significant cuts such as a 50% reduction for Mistral Nemo and an 80% decrease for Mistral Small and Codestral, making advanced AI more cost-effective for users. The company also unveiled Mistral Small v24.09, a 22-billion-parameter model offering a balance between performance and efficiency, suitable for tasks like translation, summarization, and sentiment analysis. Furthermore, they made Pixtral 12B, a vision-capable model with image understanding capabilities, freely available on "Le Chat," allowing users to analyze and caption images without compromising text-based performance.Starting Price: Free -
46
Devstral Small 2
Mistral AI
Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.Starting Price: Free -
47
PygmalionAI
PygmalionAI
PygmalionAI is a community dedicated to creating open-source projects based on EleutherAI's GPT-J 6B and Meta's LLaMA models. In simple terms, Pygmalion makes AI fine-tuned for chatting and roleplaying purposes. The current actively supported Pygmalion AI model is the 7B variant, based on Meta AI's LLaMA model. With only 18GB (or less) VRAM required, Pygmalion offers better chat capability than much larger language models with relatively minimal resources. Our curated dataset of high-quality roleplaying data ensures that your bot will be the optimal RP partner. Both the model weights and the code used to train it are completely open-source, and you can modify/re-distribute it for whatever purpose you want. Language models, including Pygmalion, generally run on GPUs since they need access to fast memory and massive processing power in order to output coherent text at an acceptable speed.Starting Price: Free -
48
Alpa
Alpa
Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.Starting Price: Free -
49
Cerebras-GPT
Cerebras
State-of-the-art language models are extremely challenging to train; they require huge compute budgets, complex distributed compute techniques and deep ML expertise. As a result, few organizations train large language models (LLMs) from scratch. And increasingly those that have the resources and expertise are not open sourcing the results, marking a significant change from even a few months back. At Cerebras, we believe in fostering open access to the most advanced models. With this in mind, we are proud to announce the release to the open source community of Cerebras-GPT, a family of seven GPT models ranging from 111 million to 13 billion parameters. Trained using the Chinchilla formula, these models provide the highest accuracy for a given compute budget. Cerebras-GPT has faster training times, lower training costs, and consumes less energy than any publicly available model to date.Starting Price: Free -
50
DeepSeek V3.1
DeepSeek
DeepSeek V3.1 is a groundbreaking open-weight large language model featuring a massive 685-billion parameters and an extended 128,000‑token context window, enabling it to process documents equivalent to 400-page books in a single prompt. It delivers integrated capabilities for chat, reasoning, and code generation within a unified hybrid architecture, seamlessly blending these functions into one coherent model. V3.1 supports a variety of tensor formats to give developers flexibility in optimizing performance across different hardware. Early benchmark results show robust performance, including a 71.6% score on the Aider coding benchmark, putting it on par with or ahead of systems like Claude Opus 4 and doing so at a far lower cost. Made available under an open source license on Hugging Face with minimal fanfare, DeepSeek V3.1 is poised to reshape access to high-performance AI, challenging traditional proprietary models.Starting Price: Free