Alternatives to OrigoDB

Compare OrigoDB alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to OrigoDB in 2024. Compare features, ratings, user reviews, pricing, and more from OrigoDB competitors and alternatives in order to make an informed decision for your business.

  • 1
    Amazon DynamoDB
    Amazon DynamoDB is a key-value and document database that delivers single-digit millisecond performance at any scale. It's a fully managed, multi-region, Multimaster, durable database with built-in security, backup and restore, and in-memory caching for internet-scale applications. DynamoDB can handle more than 10 trillion requests per day and can support peaks of more than 20 million requests per second. Many of the world's fastest-growing businesses such as Lyft, Airbnb, and Redfin as well as enterprises such as Samsung, Toyota, and Capital One depend on the scale and performance of DynamoDB to support their mission-critical workloads. Focus on driving innovation with no operational overhead. Build out your game platform with player data, session history, and leaderboards for millions of concurrent users. Use design patterns for deploying shopping carts, workflow engines, inventory tracking, and customer profiles. DynamoDB supports high-traffic, extreme-scaled events.
  • 2
    RavenDB

    RavenDB

    RavenDB

    RavenDB is the pioneer NoSQL Document Database that is fully transactional (ACID) across your database and throughout your cluster. At a fraction of the total cost of ownership (TCO), our open source distributed database offers high availability and high performance with zero administration. It is designed as an easy to use all-in-one database which minimizes the need for third party addons, tools, or support to boost developer productivity and get your project into production fast. You can setup and secure a data cluster in minutes and deploy in the cloud, on-premise or in a hybrid environment. RavenDB offers a Database as a Service solution, allowing you to pass on all your database operations to us so you can focus exclusively on your application. RavenDB has a built-in storage engine, Voron, that operates at speeds up to 1 million reads per second and 150,000 writes per second on a single node using simple commodity hardware to increase your application’s performance.
  • 3
    Symas LMDB

    Symas LMDB

    Symas Corporation

    Symas LMDB is an extraordinarily fast, memory-efficient database we developed for the OpenLDAP Project. With memory-mapped files, it has the read performance of a pure in-memory database while retaining the persistence of standard disk-based databases. Bottom line, with only 32KB of object code, LMDB may seem tiny. But it’s the right 32KB. Compact and efficient are two sides of a coin; that’s part of what makes LMDB so powerful. Symas offers fixed-price commercial support to those using LMDB in your applications. Development occurs in the OpenLDAP Project‘s git repo in the mdb.master branch. Symas LMDB has been written about, talked about, and utilized in a variety of impressive products and publications.
  • 4
    InterSystems IRIS

    InterSystems IRIS

    InterSystems

    InterSystems IRIS is a complete cloud-first data platform that includes a multi-model transactional data management engine, an application development platform, and interoperability engine, and an open analytics platform. It is the next generation of our proven data management software.It includes the capabilities of InterSystems Cache and Ensemble, plus a wealth of exciting new capabilities to make it easy to build and deploy cloud based, analytics-intensive enterprise applications with even greater performance and scalability. InterSystems IRIS provides a set of APIs to operate with transactional persistent data simultaneously: key-value, relational, object, document, multidimensional. Data can be managed by SQL, Java, node.js, .NET, C++, Python, and native server-side ObjectScript language. InterSystems IRIS includes
  • 5
    Redis

    Redis

    Redis Labs

    Redis Labs: home of Redis. Redis Enterprise is the best version of Redis. Go beyond cache; try Redis Enterprise free in the cloud using NoSQL & data caching with the world’s fastest in-memory database. Run Redis at scale, enterprise grade resiliency, massive scalability, ease of management, and operational simplicity. DevOps love Redis in the Cloud. Developers can access enhanced data structures, a variety of modules, and rapid innovation with faster time to market. CIOs love the confidence of working with 99.999% uptime best in class security and expert support from the creators of Redis. Implement relational databases, active-active, geo-distribution, built in conflict distribution for simple and complex data types, & reads/writes in multiple geo regions to the same data set. Redis Enterprise offers flexible deployment options, cloud on-prem, & hybrid. Redis Labs: home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 6
    Memstate

    Memstate

    Memstate

    Build high quality, mission critical applications with real-time performance at a fraction of the time and cost. Memstate is a new. Moving data back and forth between disk and RAM is not just extremely inefficient, it requires multiple layers of complex software that can be eliminated entirely. Use Memstate to structure and manage your data in-memory, obtain transparent persistence, concurrency control and transactions with strong ACID guarantees. note: this is too techy... Make your applications 100x faster, and your developers 10x more productive. Memstate has many possible use cases but is designed primarily to handle complex OLTP workloads in a typical enterprise application. In-memory operations are orders of magnitude faster than disk operations. A single Memstate engine can execute millions of read transactions and tens of thousands of write transactions per second, all at submillisecond latency.
    Starting Price: €200 per GB RAM per server
  • 7
    Azure Cosmos DB
    Azure Cosmos DB is a fully managed NoSQL database service for modern app development with guaranteed single-digit millisecond response times and 99.999-percent availability backed by SLAs, automatic and instant scalability, and open source APIs for MongoDB and Cassandra. Enjoy fast writes and reads anywhere in the world with turnkey multi-master global distribution. Reduce time to insight by running near-real time analytics and AI on the operational data within your Azure Cosmos DB NoSQL database. Azure Synapse Link for Azure Cosmos DB seamlessly integrates with Azure Synapse Analytics without data movement or diminishing the performance of your operational data store.
  • 8
    ArcadeDB

    ArcadeDB

    ArcadeDB

    Manage complex models using ArcadeDB without any compromise. Forget about Polyglot Persistence. no need for multiple databases. You can store graphs, documents, key values and time series all in one ArcadeDB Multi-Model database. Since each model is native to the database engine, you don't have to worry about translations slowing you down. ArcadeDB's engine was built with Alien Technology. It's able to crunch millions of records per second. With ArcadeDB, the traversing speed is not affected by the database size. It is always constant, whether your database has a few records or billions. ArcadeDB can work as an embedded database, on a single server and can scale up using multiple servers with Kubernetes. Flexible enough to run on any platform with a small footprint. Your data is secure. Our unbreakable fully transactional engine assures durability for mission-critical production databases. ArcadeDB uses a Raft Consensus Algorithm to maintain consistency across multiple servers.
    Starting Price: Free
  • 9
    Oracle Database
    Oracle database products offer customers cost-optimized and high-performance versions of Oracle Database, the world's leading converged, multi-model database management system, as well as in-memory, NoSQL, and MySQL databases. Oracle Autonomous Database, available on-premises via Oracle Cloud@Customer or in the Oracle Cloud Infrastructure, enables customers to simplify relational database environments and reduce management workloads. Oracle Autonomous Database eliminates the complexity of operating and securing Oracle Database while giving customers the highest levels of performance, scalability, and availability. Oracle Database can be deployed on-premises when customers have data residency and network latency concerns. Customers with applications that are dependent on specific Oracle database versions have complete control over the versions they run and when those versions change.
  • 10
    InterSystems Caché
    InterSystems Caché® is a high-performance database that powers transaction processing applications around the world. It is used for everything from mapping a billion stars in the Milky Way, to processing a billion equity trades in a day, to managing smart energy grids. Caché is a multi-model (object, relational, key-value) DBMS and application server developed by InterSystems. InterSystems Caché provides several APIs to operate with same data simultaneously: key-value, relational, object, document, multi-dimensional. Data can be managed via SQL, Java, node.js, .NET, C++, Python. Caché also provides an application server which hosts web apps (CSP), REST, SOAP, web sockets and other types of TCP access for Caché data.
  • 11
    OrientDB
    OrientDB is the world’s fastest graph database. Period. An independent benchmark study by IBM and the Tokyo Institute of Technology showed that OrientDB is 10x faster than Neo4j on graph operations among all the workloads. Drive competitive advantage and accelerate innovation with new revenue streams.
  • 12
    Hazelcast

    Hazelcast

    Hazelcast

    In-Memory Computing Platform. The digital world is different. Microseconds matter. That's why the world's largest organizations rely on us to power their most time-sensitive applications at scale. New data-enabled applications can deliver transformative business power – if they meet today’s requirement of immediacy. Hazelcast solutions complement virtually any database to deliver results that are significantly faster than a traditional system of record. Hazelcast’s distributed architecture provides redundancy for continuous cluster up-time and always available data to serve the most demanding applications. Capacity grows elastically with demand, without compromising performance or availability. The fastest in-memory data grid, combined with third-generation high-speed event processing, delivered through the cloud.
  • 13
    Couchbase

    Couchbase

    Couchbase

    Unlike other NoSQL databases, Couchbase provides an enterprise-class, multicloud to edge database that offers the robust capabilities required for business-critical applications on a highly scalable and available platform. As a distributed cloud-native database, Couchbase runs in modern dynamic environments and on any cloud, either customer-managed or fully managed as-a-service. Couchbase is built on open standards, combining the best of NoSQL with the power and familiarity of SQL, to simplify the transition from mainframe and relational databases. Couchbase Server is a multipurpose, distributed database that fuses the strengths of relational databases such as SQL and ACID transactions with JSON’s versatility, with a foundation that is extremely fast and scalable. It’s used across industries for things like user profiles, dynamic product catalogs, GenAI apps, vector search, high-speed caching, and much more.
  • 14
    ArangoDB

    ArangoDB

    ArangoDB

    Natively store data for graph, document and search needs. Utilize feature-rich access with one query language. Map data natively to the database and access it with the best patterns for the job – traversals, joins, search, ranking, geospatial, aggregations – you name it. Polyglot persistence without the costs. Easily design, scale and adapt your architectures to changing needs and with much less effort. Combine the flexibility of JSON with semantic search and graph technology for next generation feature extraction even for large datasets.
  • 15
    DataStax

    DataStax

    DataStax

    The Open, Multi-Cloud Stack for Modern Data Apps. Built on open-source Apache Cassandra™. Global-scale and 100% uptime without vendor lock-in. Deploy on multi-cloud, on-prem, open-source, and Kubernetes. Elastic and pay-as-you-go for improved TCO. Start building faster with Stargate APIs for NoSQL, real-time, reactive, JSON, REST, and GraphQL. Skip the complexity of multiple OSS projects and APIs that don’t scale. Ideal for commerce, mobile, AI/ML, IoT, microservices, social, gaming, and richly interactive applications that must scale-up and scale-down with demand. Get building modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Use REST, GraphQL, JSON with your favorite full-stack framework Richly interactive apps that are elastic and viral-ready from Day 1. Pay-as-you-go Apache Cassandra DBaaS that scales effortlessly and affordably.
  • 16
    GigaSpaces

    GigaSpaces

    GigaSpaces

    Smart DIH is an operational data hub that powers real-time modern applications. It unleashes the power of customers’ data by transforming data silos into assets, turning organizations into data-driven enterprises. Smart DIH consolidates data from multiple heterogeneous systems into a highly performant data layer. Low code tools empower data professionals to deliver data microservices in hours, shortening developing cycles and ensuring data consistency across all digital channels. XAP Skyline is a cloud-native, in memory data grid (IMDG) and developer framework designed for mission critical, cloud-native apps. XAP Skyline delivers maximal throughput, microsecond latency and scale, while maintaining transactional consistency. It provides extreme performance, significantly reducing data access time, which is crucial for real-time decisioning, and transactional applications. XAP Skyline is used in financial services, retail, and other industries where speed and scalability are critical.
  • 17
    RocksDB

    RocksDB

    RocksDB

    RocksDB uses a log structured database engine, written entirely in C++, for maximum performance. Keys and values are just arbitrarily-sized byte streams. RocksDB is optimized for fast, low latency storage such as flash drives and high-speed disk drives. RocksDB exploits the full potential of high read/write rates offered by flash or RAM. RocksDB provides basic operations such as opening and closing a database, reading and writing to more advanced operations such as merging and compaction filters. RocksDB is adaptable to different workloads. From database storage engines such as MyRocks to application data caching to embedded workloads, RocksDB can be used for a variety of data needs.
  • 18
    BangDB

    BangDB

    BangDB

    BangDB natively integrates AI, streaming, graph, analytics within the DB itself to enable users to deal with complex data of different kinds, such as text, images, videos, objects etc. for real time data processing and analysis Ingest or stream any data, process it, train models, do prediction, find patterns, take action and automate all these to enable use cases such as IOT monitoring, fraud or disruption prevention, log analysis, lead generation, 1-on-1 personalisation and many more. Today’s use cases require different kinds of data to be ingested, processed, and queried at the same time for a given problem. BangDB supports most of the useful data formats to allow user to solve the problem in a simple manner. Rise of real time data pushes for real time streaming and predictive data analytics for advanced and optimized business operations.
    Starting Price: $2,499 per year
  • 19
    IBM Cloud Databases
    IBM Cloud Databases are open source data stores for enterprise application development. Built on a Kubernetes foundation, they offer a database platform for serverless applications. They are designed to scale storage and compute resources seamlessly without being constrained by the limits of a single server. Natively integrated and available in the IBM Cloud console, these databases are now available through a consistent consumption, pricing, and interaction model. They aim to provide a cohesive experience for developers that include access control, backup orchestration, encryption key management, auditing, monitoring, and logging.
  • 20
    MarkLogic

    MarkLogic

    Progress Software

    Unlock data value, accelerate insightful decisions, and securely achieve data agility with the MarkLogic data platform. Combine your data with everything known about it (metadata) in a single service and reveal smarter decisions—faster. Get a faster, trusted way to securely connect data and metadata, create and interpret meaning, and consume high-quality contextualized data across the enterprise with the MarkLogic data platform. Know your customers in-the-moment and provide relevant and seamless experiences, reveal new insights to accelerate innovation, and easily enable governed access and compliance with a single data platform. MarkLogic provides a proven foundation to help you achieve your key business and technical outcomes—now and in the future.
  • 21
    Graph Engine

    Graph Engine

    Microsoft

    Graph Engine (GE) is a distributed in-memory data processing engine, underpinned by a strongly-typed RAM store and a general distributed computation engine. The distributed RAM store provides a globally addressable high-performance key-value store over a cluster of machines. Through the RAM store, GE enables the fast random data access power over a large distributed data set. The capability of fast data exploration and distributed parallel computing makes GE a natural large graph processing platform. GE supports both low-latency online query processing and high-throughput offline analytics on billion-node large graphs. Schema does matter when we need to process data efficiently. Strongly-typed data modeling is crucial for compact data storage, fast data access, and clear data semantics. GE is good at managing billions of run-time objects of varied sizes. One byte counts as the number of objects goes large. GE provides fast memory allocation and reallocation with high memory ratios.
  • 22
    Dragonfly

    Dragonfly

    Dragonfly

    Dragonfly is a drop-in Redis replacement that cuts costs and boosts performance. Designed to fully utilize the power of modern cloud hardware and deliver on the data demands of modern applications, Dragonfly frees developers from the limits of traditional in-memory data stores. The power of modern cloud hardware can never be realized with legacy software. Dragonfly is optimized for modern cloud computing, delivering 25x more throughput and 12x lower snapshotting latency when compared to legacy in-memory data stores like Redis, making it easy to deliver the real-time experience your customers expect. Scaling Redis workloads is expensive due to their inefficient, single-threaded model. Dragonfly is far more compute and memory efficient, resulting in up to 80% lower infrastructure costs. Dragonfly scales vertically first, only requiring clustering at an extremely high scale. This results in a far simpler operational model and a more reliable system.
    Starting Price: Free
  • 23
    SwayDB

    SwayDB

    SwayDB

    Embeddable persistent and in-memory key-value storage engine for high performance & resource efficiency. Designed to be efficient at managing bytes on-disk and in-memory by recognising reoccurring patterns in serialised bytes without restricting the core implementation to any specific data model (SQL, NoSQL etc) or storage type (Disk or RAM). The core provides many configurations that can be manually tuned for custom use-cases, but we aim implement automatic runtime tuning when we are able to collect and analyse runtime machine statistics & read-write patterns. Manage data by creating familiar data structures like Map, Set, Queue, SetMap, MultiMap that can easily be converted to native Java and Scala collections. Perform conditional updates/data modifications with any Java, Scala or any native JVM code - No query language.
  • 24
    TIBCO Graph Database
    To unveil the true value of constantly evolving business data, you need to understand the relationships in data in a much more profound way. Unlike other databases, a graph database puts relationships at the forefront, using Graph theory and Linear Algebra to traverse and show how complex data webs, data sources, and data points relate. TIBCO® Graph Database allows you to discover, store, and convert complex dynamic data into meaningful insights. Enable users to rapidly build data and computational models that establish dynamic relationships among organizational silos. These knowledge graphs deliver value by connecting your organization’s vast array of data and revealing relationships that let you accelerate optimization of assets and processes. Combined OLTP and OLAP features in a single enterprise-grade database. Optimistic ACID level transaction properties with native storage and access.
  • 25
    BergDB

    BergDB

    BergDB

    Welcome! BergDB is a Java/.NET database designed to be simple and efficient. It was created for us developers who prefer to focus on our specific task, rather then spend time on database issues. BergDB has: simple key-value storage, ACID transactions, historic queries, efficient concurrency control, secondary indexes, fast append-only storage, replication, transparent object serialization and more. BergDB is an embedded, open-source, document-oriented, schemaless, NoSQL database. BergDB is built from the ground up to execute transactions exceptionally fast. And there are no compromises, all writes to the database are made in ACID transactions with the highest possible level of consistency (in SQL-speak: serializable isolation level). Historic queries are important when previous data states are of interest, and also as a fast way to handle concurrency. A read operation never locks anything in BergDB.
  • 26
    Aster SQL-GR
    Powerful graph analytics with ease. Aster SQL-GR™ is a native graph processing engine for Graph Analysis that makes it easy to solve complex business problems such as social network/influencer analysis, fraud detection, supply chain management, network analysis and threat detection, and money laundering that are more impactful than simple graph navigation analysis. SQL-GR is based on the Bulk Synchronous Processing (BSP) model and uses massively iterative, distributed & parallel processing to solve complex graph problems. SQL-GR is massively scalable as it is based on the BSP iterative processing model and takes advantage of Teradata Aster’s massively scalable parallel processing (MPP) architecture to distribute the graph processing across multiple servers/nodes. SQL-GR is not bound by memory limits or to a single server/node. Easily apply unmatched power and speed to perform complex graph analysis at big data scale.
  • 27
    Aerospike

    Aerospike

    Aerospike

    Aerospike is the global leader in next-generation, real-time NoSQL data solutions for any scale. Aerospike enterprises overcome seemingly impossible data bottlenecks to compete and win with a fraction of the infrastructure complexity and cost of legacy NoSQL databases. Aerospike’s patented Hybrid Memory Architecture™ delivers an unbreakable competitive advantage by unlocking the full potential of modern hardware, delivering previously unimaginable value from vast amounts of data at the edge, to the core and in the cloud. Aerospike empowers customers to instantly fight fraud; dramatically increase shopping cart size; deploy global digital payment networks; and deliver instant, one-to-one personalization for millions of customers. Aerospike customers include Airtel, Banca d’Italia, Nielsen, PayPal, Snap, Verizon Media and Wayfair. The company is headquartered in Mountain View, Calif., with additional locations in London; Bengaluru, India; and Tel Aviv, Israel.
  • 28
    Macrometa

    Macrometa

    Macrometa

    We deliver a geo-distributed real-time database, stream processing and compute runtime for event-driven applications across up to 175 worldwide edge data centers. App & API builders love our platform because we solve the hardest problems of sharing mutable state across 100s of global locations, with strong consistency & low latency. Macrometa enables you to surgically extend your existing infrastructure to bring part of or your entire application closer to your end users. This allows you to improve performance, user experience, and comply with global data governance laws. Macrometa is a serverless, streaming NoSQL database, with integrated pub/sub and stream data processing and compute engine. Create stateful data infrastructure, stateful functions & containers for long running workloads, and process data streams in real time. You do the code, we do all the ops and orchestration.
  • 29
    Apache Ignite

    Apache Ignite

    Apache Ignite

    Use Ignite as a traditional SQL database by leveraging JDBC drivers, ODBC drivers, or the native SQL APIs that are available for Java, C#, C++, Python, and other programming languages. Seamlessly join, group, aggregate, and order your distributed in-memory and on-disk data. Accelerate your existing applications by 100x using Ignite as an in-memory cache or in-memory data grid that is deployed over one or more external databases. Think of a cache that you can query with SQL, transact, and compute on. Build modern applications that support transactional and analytical workloads by using Ignite as a database that scales beyond the available memory capacity. Ignite allocates memory for your hot data and goes to disk whenever applications query cold records. Execute kilobyte-size custom code over petabytes of data. Turn your Ignite database into a distributed supercomputer for low-latency calculations, complex analytics, and machine learning.
  • 30
    Oracle Spatial and Graph
    Graph databases, part of Oracle’s converged database offering, eliminate the need to set up a separate database and move data. Analysts and developers can perform fraud detection in banking, find connections and link to data, and improve traceability in smart manufacturing, all while gaining enterprise-grade security, ease of data ingestion, and strong support for data workloads. Oracle Autonomous Database includes Graph Studio, with one-click provisioning, integrated tooling, and security. Graph Studio automates graph data management and simplifies modeling, analysis, and visualization across the graph analytics lifecycle. Oracle provides support for both property and RDF knowledge graphs, and simplifies the process of modeling relational data as graph structures. Interactive graph queries can run directly on graph data or in a high-performance in-memory graph server.
  • 31
    Sedna

    Sedna

    Sedna

    Sedna is a free native XML database which provides a full range of core database services - persistent storage, ACID transactions, security, indices, hot backup. Flexible XML processing facilities include W3C XQuery implementation, tight integration of XQuery with full-text search facilities and a node-level update language. It provides a number of easy exampes which can be run directly in command line and describes how to run examples provided with Sedna. Sedna distribution comes with an example set based on the XMark XML benchmark. This set allows you to investigate the features of Sedna easily. Examples include bulk load of a sample XML document and a number of sample XQuery queries and updates to this document. Below we will show how to run one of them.
  • 32
    GridDB

    GridDB

    GridDB

    GridDB uses multicast communication to constitute a cluster. Set the network to enable multicast communication. First, check the host name and an IP address. Execute “hostname -i” command to check the settings of an IP address of the host. If the IP address of the machine is the same as below, no need to perform additional network setting and you can jump to the next section. GridDB is a database that manages a group of data (known as a row) that is made up of a key and multiple values. Besides having a composition of an in-memory database that arranges all the data in the memory, it can also adopt a hybrid composition combining the use of a disk (including SSD as well) and a memory.
  • 33
    Apache Anakia

    Apache Anakia

    The Apache Software Foundation

    Anakia is potentially easier to learn than XSL, but it maintains a similar level of functionality. Learning cryptic <xsl:> tags is unnecessary; you only need to know how to use the provided Context objects, JDOM, and Velocity's simple directives. Anakia seems to perform much faster than Xalan's XSL processor at creating pages. (23 pages are generated in 7-8 seconds on a PIII 500mhz running Win98 and JDK 1.3 with client Hotspot. A similar system using Ant's <style> task took 14-15 seconds -- nearly a 2x speed improvement.) Anakia -- intended to replace Stylebook, which was originally used to generate simple, static web sites in which all pages had the same look and feel -- is great for documentation/project web sites, such as the sites on www.apache.org and jakarta.apache.org. As it is more targeted to a specific purpose, it does not provide some of XSL's "extra" functionality.
  • 34
    XMLSpy

    XMLSpy

    Altova

    Altova XMLSpy is the world's best-selling JSON and XML editor for modeling, editing, transforming, and debugging related technologies. XMLSpy JSON and XML Editor give developers the tools they need to build the most sophisticated applications with its graphical schema designer, code generation, file converters, debuggers, and profilers for working with XSD, XSLT, XQuery, XBRL, SOAP, and more. Developers need a JSON and XML editor that adds value beyond bracket matching and basic validation checking. XMLSpy provides the comprehensive feature set below and includes graphical views, code generators, wizards, and other intelligent JSON and XML editing functionality that help you get the job done faster than ever. XMLSpy abstracts away the complexity of editing XML and related technologies through its intuitive user interface and rich variety of views and options. Whether you prefer to edit XML documents in a text-based or graphical XML viewer, XMLSpy provides intelligent guidance.
    Starting Price: $499 one-time payment
  • 35
    Infinispan

    Infinispan

    Infinispan

    Infinispan is an open-source in-memory data grid that offers flexible deployment options and robust capabilities for storing, managing, and processing data. Infinispan provides a key/value data store that can hold all types of data, from Java objects to plain text. Infinispan distributes your data across elastically scalable clusters to guarantee high availability and fault tolerance, whether you use Infinispan as a volatile cache or a persistent data store. Infinispan turbocharges applications by storing data closer to processing logic, which reduces latency and increases throughput. Available as a Java library, you simply add Infinispan to your application dependencies and then you’re ready to store data in the same memory space as the executing code.
  • 36
    HyperGraphDB

    HyperGraphDB

    Kobrix Software

    HyperGraphDB is a general purpose, open-source data storage mechanism based on a powerful knowledge management formalism known as directed hypergraphs. While a persistent memory model designed mostly for knowledge management, AI and semantic web projects, it can also be used as an embedded object-oriented database for Java projects of all sizes. Or a graph database, or a (non-SQL) relational database. HyperGraphDB is a storage framework based on generalized hypergraphs as its underlying data model. The unit of storage is a tuple made up of 0 or more other tuples. Each such tuple is called an atom. One could think of the data model as relational where higher-order, n-ary relationships are allowed or as graph-oriented where edges can point to an arbitrary set of nodes and other edges. Each atom has an arbitrary, strongly-typed value associated with it. The type system managing those values is embedded as a hypergraph and customizable from the ground up.
  • 37
    Grakn

    Grakn

    Grakn Labs

    Building intelligent systems starts at the database. Grakn is an intelligent database - a knowledge graph. An insanely intuitive & expressive data schema, with constructs to define hierarchies, hyper-entities, hyper-relations and rules, to build rich knowledge models. An intelligent language that performs logical inference of data types, relationships, attributes and complex patterns, during runtime, and over distributed & persisted data. Out-of-the-box distributed analytics (Pregel and MapReduce) algorithms, accessible through the language through simple queries. Strong abstraction over low-level patterns, enabling simpler expressions of complex constructs, while the system figures out the most optimal query execution. Scale your enterprise Knowledge Graph with Grakn KGMS and Workbase. A distributed database designed to scale over a network of computers through partitioning and replication.
  • 38
    FlockDB

    FlockDB

    Twitter

    A distributed, fault-tolerant graph database. FlockDB is a distributed graph database for storing adjancency lists, with goals of supporting a high rate of add/update/remove operations, potientially complex set arithmetic queries, paging through query result sets containing millions of entries, ability to "archive" and later restore archived edges, horizontal scaling including replication, and online data migration. Non-goals include multi-hop queries (or graph-walking queries), and automatic shard migrations. FlockDB is much simpler than other graph databases such as neo4j because it tries to solve fewer problems. It scales horizontally and is designed for on-line, low-latency, high throughput environments such as web-sites. Twitter uses FlockDB to store social graphs (who follows whom, who blocks whom) and secondary indices. As of April 2010, the Twitter FlockDB cluster stores 13+ billion edges and sustains peak traffic of 20k writes/second and 100k reads/second.
  • 39
    FairCom DB

    FairCom DB

    FairCom Corporation

    FairCom DB is ideal for large-scale, mission-critical, core-business applications that require performance, reliability and scalability that cannot be achieved by other databases. FairCom DB delivers predictable high-velocity transactions and massively parallel big data analytics. It empowers developers with NoSQL APIs for processing binary data at machine speed and ANSI SQL for easy queries and analytics over the same binary data. Among the companies that take advantage of the flexibility of FairCom DB is Verizon, who recently chose FairCom DB as an in-memory database for its Verizon Intelligent Network Control Platform Transaction Server Migration. FairCom DB is an advanced database engine that gives you a Continuum of Control to achieve unprecedented performance with the lowest total cost of ownership (TCO). You do not conform to FairCom DB…FairCom DB conforms to you. With FairCom DB, you are not forced to conform your needs to meet the limitations of the database.
  • 40
    Voldemort

    Voldemort

    Voldemort

    Voldemort is not a relational database, it does not attempt to satisfy arbitrary relations while satisfying ACID properties. Nor is it an object database that attempts to transparently map object reference graphs. Nor does it introduce a new abstraction such as document-orientation. It is basically just a big, distributed, persistent, fault-tolerant hash table. For applications that can use an O/R mapper like active-record or hibernate this will provide horizontal scalability and much higher availability but at great loss of convenience. For large applications under internet-type scalability pressure, a system may likely consist of a number of functionally partitioned services or APIs, which may manage storage resources across multiple data centers using storage systems which may themselves be horizontally partitioned. For applications in this space, arbitrary in-database joins are already impossible since all the data is not available in any single database.
  • 41
    FoundationDB

    FoundationDB

    FoundationDB

    FoundationDB is multi-model, meaning you can store many types data in a single database. All data is safely stored, distributed, and replicated in the Key-Value Store component. FoundationDB is easy to install, grow, and manage. It has a distributed architecture that gracefully scales out, and handles faults while acting like a single ACID database. FoundationDB provides amazing performance on commodity hardware, allowing you to support very heavy loads at low cost. FoundationDB has been running in production for years and been hardened with lessons learned. Backing FoundationDB up is an unmatched testing system based on a deterministic simulation engine. We encourage your participation in our open-source community! Join us in technical and user discussions on the community forums, and learn how to contribute.
  • 42
    Percona Server for MongoDB
    Percona Server for MongoDB is a free and open-source drop-in replacement for MongoDB Community Edition. It combines all the features and benefits of MongoDB Community Edition with enterprise-class features from Percona. Built on the MongoDB Community Edition, Percona Server for MongoDB provides flexible data structure, native high availability, easy scalability, and developer-friendly syntax. It also includes an in-memory engine, hot backups, LDAP authentication, database auditing, and log redaction.
  • 43
    Google Cloud Datastore
    Datastore is a highly scalable NoSQL database for your applications. Datastore automatically handles sharding and replication, providing you with a highly available and durable database that scales automatically to handle your applications' load. Datastore provides a myriad of capabilities such as ACID transactions, SQL-like queries, indexes, and much more. With Datastore's RESTful interface, data can easily be accessed by any deployment target. You can build solutions that span across App Engine and Compute Engine and rely on Datastore as the integration point. Focus on building your applications without worrying about provisioning and load anticipation. Datastore scales seamlessly and automatically with your data, allowing applications to maintain high performance as they receive more traffic.
  • 44
    Oracle Berkeley DB
    Berkeley DB is a family of embedded key-value database libraries providing scalable high-performance data management services to applications. The Berkeley DB products use simple function-call APIs for data access and management. Berkeley DB enables the development of custom data management solutions, without the overhead traditionally associated with such custom projects. Berkeley DB provides a collection of well-proven building-block technologies that can be configured to address any application need from the hand-held device to the data center, from a local storage solution to a world-wide distributed one, from kilobytes to petabytes.
  • 45
    Amazon DocumentDB
    Amazon DocumentDB (with MongoDB compatibility) is a fast, scalable, highly available, and fully managed document database service that supports MongoDB workloads. As a document database, Amazon DocumentDB makes it easy to store, query, and index JSON data. Amazon DocumentDB is a non-relational database service designed from the ground-up to give you the performance, scalability, and availability you need when operating mission-critical MongoDB workloads at scale. In Amazon DocumentDB, the storage and compute are decoupled, allowing each to scale independently, and you can increase the read capacity to millions of requests per second by adding up to 15 low latency read replicas in minutes, regardless of the size of your data. Amazon DocumentDB is designed for 99.99% availability and replicates six copies of your data across three AWS Availability Zones (AZs).
  • 46
    Terracotta

    Terracotta

    Software AG

    Terracotta DB is a comprehensive, distributed in-memory data management solution which caters to caching and operational storage use cases, and enables transactional and analytical processing. Ultra-Fast Ram + Big Data = Business Power. With BigMemory, you get: Real-time access to terabytes of in-memory data. High throughput with low, predictable latency. Support for Java®, Microsoft® .NET/C#, C++ applications. 99.999 percent uptime. Linear scalability. Data consistency guarantees across multiple servers. Optimized data storage across RAM and SSD. SQL support for querying in-memory data. Reduced infrastructure costs through maximum hardware utilization. High-performance, persistent storage for durability and ultra-fast restart. Advanced monitoring, management and control. Ultra-fast in-memory data stores that automatically move data where it’s needed. Support for data replication across multiple data centers for disaster recovery. Manage fast-moving data in real time
  • 47
    ContentCenter

    ContentCenter

    Medforce Technologies

    ContentCenter is a secure electronic filing and content management software solution engineered to help organizations improve their collaboration and increase their employee effectiveness. Feature-rich and equipped with the industry’s highest auto-filing rates and the most advanced OCR, ContentCenter enables companies to reduce their filing time by over 80% and eliminate the consequences of manual errors. Core features include unlimited document storage space, customizable document annotations, barcoding and OCR, MICR reading, optional shipment tracker, audit logs and tracking capabilities, among others. ContentCenter mimics live work and is highly customizable to your unique data capture and storage needs. Use it in conjunction with FormsCenter to create a single go-to resource for all pertinent information.
  • 48
    SinglebaseCloud

    SinglebaseCloud

    SinglebaseCloud

    SinglebaseCloud is an all-in-one AI-Powered backend-as-a-service platform to build mobile and web apps fast. We provide the following components for you to build your apps: Vector Database, Relational Document Database for flexible data model, Authentication for users to signup and login to your apps, AI Similarity Search, Storage for documents and images. With SinglebaseCloud, time-consuming infrastructure, provisions, scaling, security, and data integrity tasks for you, are all handled, so you won't need Devops nor backend engineers to support your backend. We've got your backend. SinglebaseCloud offers a good Free Starter plan. With no usage limit or data caps, we provide unlimited API calls, storage so you can explore, experiment and build your apps for production. With our Pro Plan, you will have no billing surprises. Just one flat fee for all your backend needs - Predictable costs, unlimited possibilities.
    Starting Price: $45/month
  • 49
    JanusGraph

    JanusGraph

    JanusGraph

    JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a project under The Linux Foundation, and includes participants from Expero, Google, GRAKN.AI, Hortonworks, IBM and Amazon. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. All functionality is totally free. No need to buy commercial licenses. JanusGraph is fully open source under the Apache 2 license. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Support for ACID and eventual consistency. In addition to online transactional processing (OLTP), JanusGraph supports global graph analytics (OLAP) with its Apache Spark integration.
  • 50
    Titan

    Titan

    DataStax

    Titan is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. Titan is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. Support for ACID and eventual consistency. Support for various storage backends like Apache Cassandra, Apache HBase and Oracle BerkeleyDB. Support for global graph data analytics, reporting, and ETL through integration with big data platforms like Apache Spark, Apache Giraph and Apache Hadoop. Native integration with the TinkerPop graph stack for Gremlin graph query language, Gremlin graph server and Gremlin applications.