Alternatives to ONNX

Compare ONNX alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to ONNX in 2024. Compare features, ratings, user reviews, pricing, and more from ONNX competitors and alternatives in order to make an informed decision for your business.

  • 1
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • 2
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
    Starting Price: Free
  • 3
    Cerebrium

    Cerebrium

    Cerebrium

    Deploy all major ML frameworks such as Pytorch, Onnx, XGBoost etc with 1 line of code. Don't have your own models? Deploy our prebuilt models that have been optimised to run with sub-second latency. Fine-tune smaller models on particular tasks in order to decrease costs and latency while increasing performance. It takes just a few lines of code and don't worry about infrastructure, we got it. Integrate with top ML observability platforms in order to be alerted about feature or prediction drift, compare model versions and resolve issues quickly. Discover the root causes for prediction and feature drift to resolve degraded model performance. Understand which features are contributing most to the performance of your model.
    Starting Price: $ 0.00055 per second
  • 4
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 5
    HPE Ezmeral ML OPS

    HPE Ezmeral ML OPS

    Hewlett Packard Enterprise

    HPE Ezmeral ML Ops provides pre-packaged tools to operationalize machine learning workflows at every stage of the ML lifecycle, from pilot to production, giving you DevOps-like speed and agility. Quickly spin-up environments with your preferred data science tools to explore a variety of enterprise data sources and simultaneously experiment with multiple machine learning or deep learning frameworks to pick the best fit model for the business problems you need to address. Self-service, on-demand environments for development and test or production workloads. Highly performant training environments—with separation of compute and storage—that securely access shared enterprise data sources in on-premises or cloud-based storage. HPE Ezmeral ML Ops enables source control with out of the box integration tools such as GitHub. Store multiple models (multiple versions with metadata) for various runtime engines in the model registry.
  • 6
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 7
    OctoAI

    OctoAI

    OctoML

    OctoAI is world-class compute infrastructure for tuning and running models that wow your users. Fast, efficient model endpoints and the freedom to run any model. Leverage OctoAI’s accelerated models or bring your own from anywhere. Create ergonomic model endpoints in minutes, with only a few lines of code. Customize your model to fit any use case that serves your users. Go from zero to millions of users, never worrying about hardware, speed, or cost overruns. Tap into our curated list of best-in-class open-source foundation models that we’ve made faster and cheaper to run using our deep experience in machine learning compilation, acceleration techniques, and proprietary model-hardware performance technology. OctoAI automatically selects the optimal hardware target, applies the latest optimization technologies, and always keeps your running models in an optimal manner.
  • 8
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 9
    Abacus.AI

    Abacus.AI

    Abacus.AI

    Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.
  • 10
    Paravision

    Paravision

    Paravision

    Paravision provides a computer vision developer platform that powers face recognition applications serving mission-critical use cases. Our SDK's and API's enable comprehensive security and frictionless experiences and are powered by an industry-leading feature set. Our SDKs and Vision AI engines can be integrated into modern, secure infrastructure. We also build advanced solutions for identity-based security threats, like spoof attempts and deepfakes. Utilizing the most advanced AI frameworks and partnered with leading providers of hardware accelerators for AI and deep learning, Paravision delivers speed, scalability, and responsiveness while lowering operating costs. Paravision is proud to be a US-based leader in Vision AI. Whether in technical partnership, working through end-user challenges, or collaborating on market strategy, we strive to be dynamic, responsive, and focused on delivering excellence.
  • 11
    AlxBlock

    AlxBlock

    AlxBlock

    AIxBlock is a blockchain-based end-to-end platform for AI, harnessing unused computing resources from BTC miners and all idle global consumer GPUs. Our platform's core training method is a hybrid distributed machine learning approach, enabling simultaneous training across multiple nodes. We employ the DeepSpeed-TED algorithm, an innovative three-dimensional hybrid parallel algorithm that integrates data, tensor, and expert parallelism. This facilitates the training of Mixture of Experts (MoE) models on base models 4 to 8 times larger than those supported by the current state-of-the-art. The platform will seamlessly identify and add new compatible computing resources available in the computing marketplace to your existing training nodes cluster, and distribute the current ML model to be trained on unlimited computes. This process dynamically and automatically unfolds, culminating in the creation of decentralized supercomputers that facilitate AI success.
    Starting Price: $50 per month
  • 12
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • 13
    Google Deep Learning Containers
    Build your deep learning project quickly on Google Cloud: Quickly prototype with a portable and consistent environment for developing, testing, and deploying your AI applications with Deep Learning Containers. These Docker images use popular frameworks and are performance optimized, compatibility tested, and ready to deploy. Deep Learning Containers provide a consistent environment across Google Cloud services, making it easy to scale in the cloud or shift from on-premises. You have the flexibility to deploy on Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm.
  • 14
    Tenstorrent DevCloud
    We developed Tenstorrent DevCloud to give people the opportunity to try their models on our servers without purchasing our hardware. We are building Tenstorrent AI in the cloud so programmers can try our AI solutions. The first log-in is free, after that, you get connected with our team who can help better assess your needs. Tenstorrent is a team of competent and motivated people that came together to build the best computing platform for AI and software 2.0. Tenstorrent is a next-generation computing company with the mission of addressing the rapidly growing computing demands for software 2.0. Headquartered in Toronto, Canada, Tenstorrent brings together experts in the field of computer architecture, basic design, advanced systems, and neural network compilers. ur processors are optimized for neural network inference and training. They can also execute other types of parallel computation. Tenstorrent processors comprise a grid of cores known as Tensix cores.
  • 15
    Deep Infra

    Deep Infra

    Deep Infra

    Powerful, self-serve machine learning platform where you can turn models into scalable APIs in just a few clicks. Sign up for Deep Infra account using GitHub or log in using GitHub. Choose among hundreds of the most popular ML models. Use a simple rest API to call your model. Deploy models to production faster and cheaper with our serverless GPUs than developing the infrastructure yourself. We have different pricing models depending on the model used. Some of our language models offer per-token pricing. Most other models are billed for inference execution time. With this pricing model, you only pay for what you use. There are no long-term contracts or upfront costs, and you can easily scale up and down as your business needs change. All models run on A100 GPUs, optimized for inference performance and low latency. Our system will automatically scale the model based on your needs.
    Starting Price: $0.70 per 1M input tokens
  • 16
    Lambda GPU Cloud
    Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.
    Starting Price: $1.25 per hour
  • 17
    Hopsworks

    Hopsworks

    Logical Clocks

    Hopsworks is an open-source Enterprise platform for the development and operation of Machine Learning (ML) pipelines at scale, based around the industry’s first Feature Store for ML. You can easily progress from data exploration and model development in Python using Jupyter notebooks and conda to running production quality end-to-end ML pipelines, without having to learn how to manage a Kubernetes cluster. Hopsworks can ingest data from the datasources you use. Whether they are in the cloud, on‑premise, IoT networks, or from your Industry 4.0-solution. Deploy on‑premises on your own hardware or at your preferred cloud provider. Hopsworks will provide the same user experience in the cloud or in the most secure of air‑gapped deployments. Learn how to set up customized alerts in Hopsworks for different events that are triggered as part of the ingestion pipeline.
    Starting Price: $1 per month
  • 18
    Intelligent Artifacts

    Intelligent Artifacts

    Intelligent Artifacts

    A new category of AI. Most current AI solutions are engineered through a statistical and purely mathematical lens. We took a different approach. With discoveries in information theory, the team at Intelligent Artifacts has built a new category of AI: a true AGI that eliminates current machine intelligence shortcomings. Our framework keeps the data and application layers separate from the intelligence layer allowing it to learn in real-time, and enabling it to explain predictions down to root cause. A true AGI demands a truly integrated platform. With Intelligent Artifacts, you'll model information, not data — predictions and decisions are real-time and transparent, and can be deployed across various domains without the need to rewrite code. And by combining specialized AI consultants with our dynamic platform, you'll get a customized solution that rapidly offers deep insights and greater outcomes from your data.
  • 19
    Valohai

    Valohai

    Valohai

    Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.
    Starting Price: $560 per month
  • 20
    Seldon

    Seldon

    Seldon Technologies

    Deploy machine learning models at scale with more accuracy. Turn R&D into ROI with more models into production at scale, faster, with increased accuracy. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Deploy reduces the time to production by providing production grade inference servers optimized for popular ML framework or custom language wrappers to fit your use cases. Seldon Core Enterprise provides access to cutting-edge, globally tested and trusted open source MLOps software with the reassurance of enterprise-level support. Seldon Core Enterprise is for organizations requiring: - Coverage across any number of ML models deployed plus unlimited users - Additional assurances for models in staging and production - Confidence that their ML model deployments are supported and protected.
  • 21
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 22
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you.
  • 23
    Fiddler

    Fiddler

    Fiddler

    Fiddler is a pioneer in Model Performance Management for responsible AI. The Fiddler platform’s unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. Model monitoring, explainable AI, analytics, and fairness capabilities address the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale, build trusted AI solutions, and increase revenue.
  • 24
    UnionML

    UnionML

    Union

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. ‍ Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior.
  • 25
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 26
    Towhee

    Towhee

    Towhee

    You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Starting Price: Free
  • 27
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 28
    Owkin

    Owkin

    Owkin

    Patients from around the world suffer from complex diseases and a staggering variety of symptoms. However, they share one thing in common: Patients have a need for faster development of safer and more effective therapies. Owkin’s mission is to empower researchers in hospitals, universities, and pharmaceutical companies to: understand why drug efficacy varies from patient to patient, enhance the drug development process, and identify the best drug for the right patient to improve treatment outcomes. Owkin Loop is the foundation of Owkin’s research platform: it connects medical researchers with high-quality datasets from leading academic research centers around the world. Owkin Loop is powered by the two main components of Owkin’s Software Stack: Owkin Studio, our machine learning platform, and Owkin Connect, our federated learning framework. Owkin medical research collaborations are in Oncology, Immunology and Cardiovascular diseases.
  • 29
    Baidu AI Cloud Machine Learning (BML)
    Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
  • 30
    Keepsake

    Keepsake

    Replicate

    Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.
    Starting Price: Free
  • 31
    IBM Watson Machine Learning
    IBM Watson Machine Learning is a full-service IBM Cloud offering that makes it easy for developers and data scientists to work together to integrate predictive capabilities with their applications. The Machine Learning service is a set of REST APIs that you can call from any programming language to develop applications that make smarter decisions, solve tough problems, and improve user outcomes. Take advantage of machine learning models management (continuous learning system) and deployment (online, batch, streaming). Select any of widely supported machine learning frameworks: TensorFlow, Keras, Caffe, PyTorch, Spark MLlib, scikit learn, xgboost and SPSS. Use the command-line interface and Python client to manage your artifacts. Extend your application with artificial intelligence through the Watson Machine Learning REST API.
    Starting Price: $0.575 per hour
  • 32
    Gradient

    Gradient

    Gradient

    Explore a new library or dataset in a notebook. Automate preprocessing, training, or testing with a 2orkflow. Bring your application to life with a deployment. Use notebooks, workflows, and deployments together or independently. Compatible with everything. Gradient supports all major frameworks and libraries. Gradient is powered by Paperspace's world-class GPU instances. Move faster with source control integration. Connect to GitHub to manage all your work & compute resources with git. Launch a GPU-enabled Jupyter Notebook from your browser in seconds. Use any library or framework. Easily invite collaborators or share a public link. A simple cloud workspace that runs on free GPUs. Get started in seconds with a notebook environment that's easy to use and share. Perfect for ML developers. A powerful no-fuss environment with loads of features that just works. Choose a pre-built template or bring your own. Try a free GPU!
    Starting Price: $8 per month
  • 33
    Datoin

    Datoin

    Datoin

    Datoin removes the barrier to entry into Machine Learning using Graphical Interface and No-Code approach. It is designed to rapidly translate your vision into reality. The best way to cut the cost is to re-use over and over again. The Datoin’s Block Superstore offers a large pool of blocks ranging from enterprise software connectors, ETL tools, machine learning libraries, NLP libraries, cloud services integration, SaaS APIs etc. Goodness with Datoin is, as we cover more and more use cases, the blocks are added to the store. The pre-built machine learning models eliminate the need to train first and helps to get started quickly. We have built and building blocks that solve common problems across industries and functional area. If you are unsure about specific functionality, efficacy etc, quickly try them out by editing existing apps.
  • 34
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 35
    Modzy

    Modzy

    Modzy

    Easily deploy, manage, monitor, and secure AI models in production. Modzy is the Enterprise AI platform designed to make it easy to scale trustworthy AI to your enterprise. Use Modzy to accelerate your deployment, management, and governance of trusted AI through the power of: Enterprise-grade platform features including security, APIs, and SDKs with unlimited model deployment, management, governance and monitoring at scale. Deployment options—your hardware, private, or public cloud. Includes AirGap deployments and tactical edge. Governance and auditing for centralized AI management, so you'll always have insight into AI models running in production in real-time. World's fastest Explainability (beta) solution for deep neural networks, creating audit logs to understand model predictions. Cutting-edge security features to block data poisoning and full-suite of patented Adversarial Defense to secure models running in production.
    Starting Price: $3.79 per hour
  • 36
    Tencent Cloud TI Platform
    Tencent Cloud TI Platform is a one-stop machine learning service platform designed for AI engineers. It empowers AI development throughout the entire process from data preprocessing to model building, model training, model evaluation, and model service. Preconfigured with diverse algorithm components, it supports multiple algorithm frameworks to adapt to different AI use cases. Tencent Cloud TI Platform delivers a one-stop machine learning experience that covers a complete and closed-loop workflow from data preprocessing to model building, model training, and model evaluation. With Tencent Cloud TI Platform, even AI beginners can have their models constructed automatically, making it much easier to complete the entire training process. Tencent Cloud TI Platform's auto-tuning tool can also further enhance the efficiency of parameter tuning. Tencent Cloud TI Platform allows CPU/GPU resources to elastically respond to different computing power needs with flexible billing modes.
  • 37
    Snorkel AI

    Snorkel AI

    Snorkel AI

    AI today is blocked by lack of labeled data, not models. Unblock AI with the first data-centric AI development platform powered by a programmatic approach. Snorkel AI is leading the shift from model-centric to data-centric AI development with its unique programmatic approach. Save time and costs by replacing manual labeling with rapid, programmatic labeling. Adapt to changing data or business goals by quickly changing code, not manually re-labeling entire datasets. Develop and deploy high-quality AI models via rapid, guided iteration on the part that matters–the training data. Version and audit data like code, leading to more responsive and ethical deployments. Incorporate subject matter experts' knowledge by collaborating around a common interface, the data needed to train models. Reduce risk and meet compliance by labeling programmatically and keeping data in-house, not shipping to external annotators.
  • 38
    Bittensor

    Bittensor

    Bittensor

    Bittensor is an open-source protocol that powers a decentralized, blockchain-based machine-learning network. Machine learning models train collaboratively and are rewarded in TAO according to the informational value they offer the collective. TAO also grants external access, allowing users to extract information from the network while tuning its activities to their needs. Ultimately, our vision is to create a pure market for artificial intelligence, an incentivized arena in which consumers and producers of this valuable commodity can interact in a trustless, open, and transparent context. A novel, optimized strategy for the development and distribution of artificial intelligence technology by leveraging the possibilities of a distributed ledger. specifically, its facilitation of open access/ownership, decentralized governance, and the ability to harness globally-distributed resources of computing power and innovation within an incentivized framework.
    Starting Price: Free
  • 39
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 40
    Anaconda

    Anaconda

    Anaconda

    Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease.
  • 41
    Produvia

    Produvia

    Produvia

    Produvia is a serverless machine-learning development service. Partner with Produvia to develop and deploy machine models using serverless cloud infrastructure. Fortune 500 companies and Global 500 enterprises partner with Produvia to develop and deploy machine learning models using modern cloud infrastructure. At Produvia, we use state-of-the-art methods in machine learning and deep learning technologies to solve business problems. Organizations overspend on infrastructure costs. Modern organizations use serverless architectures to reduce server costs. Organizations are held back by complex servers and legacy code. Modern organizations use machine learning technologies to rewrite technology stacks. Companies hire software developers to write code. Modern companies use machine learning to develop software that writes code.
    Starting Price: $1,000 per month
  • 42
    AWS Trainium

    AWS Trainium

    Amazon Web Services

    AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances.
  • 43
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
    Starting Price: Free
  • 44
    Key Ward

    Key Ward

    Key Ward

    Extract, transform, manage, & process CAD, FE, CFD, and test data effortlessly. Create automatic data pipelines for machine learning, ROM, & 3D deep learning. Removing data science barriers without coding. Key Ward's platform is the first end-to-end engineering no-code solution that redefines how engineers interact with their data, experimental & CAx. Through leveraging engineering data intelligence, our software enables engineers to easily handle their multi-source data, extract direct value with our built-in advanced analytics tools, and custom-build their machine and deep learning models, all under one platform, all with a few clicks. Automatically centralize, update, extract, sort, clean, and prepare your multi-source data for analysis, machine learning, and/or deep learning. Use our advanced analytics tools on your experimental & simulation data to correlate, find dependencies, and identify patterns.
    Starting Price: €9,000 per year
  • 45
    Ensemble Dark Matter
    Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain.
  • 46
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
    Starting Price: $2495/year (per user)
  • 47
    Google Cloud AutoML
    Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. It relies on Google’s state-of-the-art transfer learning and neural architecture search technology. Cloud AutoML leverages more than 10 years of proprietary Google Research technology to help your machine learning models achieve faster performance and more accurate predictions. Use Cloud AutoML’s simple graphical user interface to train, evaluate, improve, and deploy models based on your data. You’re only a few minutes away from your own custom machine learning model. Google’s human labeling service can put a team of people to work annotating or cleaning your labels to make sure your models are being trained on high-quality data.
  • 48
    Predibase

    Predibase

    Predibase

    Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want.
  • 49
    Groq

    Groq

    Groq

    Groq is on a mission to set the standard for GenAI inference speed, helping real-time AI applications come to life today. An LPU inference engine, with LPU standing for Language Processing Unit, is a new type of end-to-end processing unit system that provides the fastest inference for computationally intensive applications with a sequential component, such as AI language applications (LLMs). The LPU is designed to overcome the two LLM bottlenecks, compute density and memory bandwidth. An LPU has greater computing capacity than a GPU and CPU in regards to LLMs. This reduces the amount of time per word calculated, allowing sequences of text to be generated much faster. Additionally, eliminating external memory bottlenecks enables the LPU inference engine to deliver orders of magnitude better performance on LLMs compared to GPUs. Groq supports standard machine learning frameworks such as PyTorch, TensorFlow, and ONNX for inference.
  • 50
    Google Cloud Datalab
    An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly.