Alternatives to Neuton AutoML

Compare Neuton AutoML alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Neuton AutoML in 2024. Compare features, ratings, user reviews, pricing, and more from Neuton AutoML competitors and alternatives in order to make an informed decision for your business.

  • 1
    Google Cloud Natural Language API
    Get insightful text analysis with machine learning that extracts, analyzes, and stores text. Train high-quality machine learning custom models without a single line of code with AutoML. Apply natural language understanding (NLU) to apps with Natural Language API. Use entity analysis to find and label fields within a document, including emails, chat, and social media, and then sentiment analysis to understand customer opinions to find actionable product and UX insights. Natural Language with speech-to-text API extracts insights from audio. Vision API adds optical character recognition (OCR) for scanned docs. Translation API understands sentiments in multiple languages. Use custom entity extraction to identify domain-specific entities within documents, many of which don’t appear in standard language models, without having to spend time or money on manual analysis. Train your own high-quality machine learning custom models to classify, extract, and detect sentiment.
  • 2
    Levity

    Levity

    Levity

    Create your own AI that takes daily, repetitive tasks off your shoulders so your team can reach the next level of productivity. Levity is a no-code platform that allows you to train AI models on images, documents, and text data. You can rebuild manual workflows and connect everything to your existing systems without writing a single line of code. Levity enables you to upload your own labeled data to train custom models that fit your business like a glove. If you want to get started even quicker, it also provides countless templates for frequent use-cases, such as sentiment analysis, customer support or document classification. Got a repetitive task that requires more than rule-based automation that standard RPA tools offer? Try Levity out for free and see within minutes what cognitive automation is capable of.
  • 3
    Supervisely

    Supervisely

    Supervisely

    The leading platform for entire computer vision lifecycle. Iterate from image annotation to accurate neural networks 10x faster. With our best-in-class data labeling tools transform your images / videos / 3d point cloud into high-quality training data. Train your models, track experiments, visualize and continuously improve model predictions, build custom solution within the single environment. Our self-hosted solution guaranties data privacy, powerful customization capabilities, and easy integration into your technology stack. A turnkey solution for Computer Vision: multi-format data annotation & management, quality control at scale and neural networks training in end-to-end platform. Inspired by professional video editing software, created by data scientists for data scientists — the most powerful video labeling tool for machine learning and more.
  • 4
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
    Starting Price: $2495/year (per user)
  • 5
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • 6
    Neural Magic

    Neural Magic

    Neural Magic

    GPUs bring data in and out quickly, but have little locality of reference because of their small caches. They are geared towards applying a lot of compute to little data, not little compute to a lot of data. The networks designed to run on them therefore execute full layer after full layer in order to saturate their computational pipeline (see Figure 1 below). In order to deal with large models, given their small memory size (tens of gigabytes), GPUs are grouped together and models are distributed across them, creating a complex and painful software stack, complicated by the need to deal with many levels of communication and synchronization among separate machines. CPUs, on the other hand, have large, much faster caches than GPUs, and have an abundance of memory (terabytes). A typical CPU server can have memory equivalent to tens or even hundreds of GPUs. CPUs are perfect for a brain-like ML world in which parts of an extremely large network are executed piecemeal, as needed.
  • 7
    NeuroIntelligence
    NeuroIntelligence is a neural networks software application designed to assist neural network, data mining, pattern recognition, and predictive modeling experts in solving real-world problems. NeuroIntelligence features only proven neural network modeling algorithms and neural net techniques; software is fast and easy-to-use. Visualized architecture search, neural network training and testing. Neural network architecture search, fitness bars, network training graphs comparison. Training graphs, dataset error, network error, weights and errors distribution, neural network input importance. Testing, actual vs. output graph, scatter plot, response graph, ROC curve, confusion matrix. The interface of NeuroIntelligence is optimized to solve data mining, forecasting, classification and pattern recognition problems. You can create a better solution much faster using the tool's easy-to-use GUI and unique time-saving capabilities.
    Starting Price: $497 per user
  • 8
    Profet AI

    Profet AI

    Profet AI

    Profet AI’s end-to-end No-Code AutoML Platform is manufacturers’ Virtual Data Scientist. It empowers industry domain/IT experts to rapidly build high-quality prediction models and deploy Industrial AI applications to solve their everyday production and digitalization challenges. Profet AI AutoML Platform is widely adopted by world's leading customers across industries, including the world's leading EMS, Semi-OSAT, PCB, IC design House, display panel and materials solution providers. We leverage industry leading companies' successful cases to benefit our customers to implement AI within one week.
  • 9
    MindsDB

    MindsDB

    MindsDB

    Open-Source AI layer for databases. Boost efficiency of your projects by bringing Machine Learning capabilities directly to the data domain. MindsDB provides a simple way to create, train and test ML models and then publish them as virtual AI-Tables into databases. Integrate seamlessly with most of databases on the market. Use SQL queries for all manipulation with ML models. Improve model training speed with GPU without affecting your database performance. Get insights on why the ML model reached its conclusions and what affects prediction confidence. Visual tools that allows you to investigate model performance. SQL and Python queries that return explainability insights in a code. What-if analysis to evaluate confidence based on different inputs. Automate the process of applying machine learning with the state-of-the-art Lightwood AutoML library. Build custom solutions with Machine Learning in your favorite programming language.
  • 10
    Kraken

    Kraken

    Big Squid

    Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.
    Starting Price: $100 per month
  • 11
    Neuri

    Neuri

    Neuri

    We conduct and implement cutting-edge research on artificial intelligence to create real advantage in financial investment. Illuminating the financial market with ground-breaking neuro-prediction. We combine novel deep reinforcement learning algorithms and graph-based learning with artificial neural networks for modeling and predicting time series. Neuri strives to generate synthetic data emulating the global financial markets, testing it with complex simulations of trading behavior. We bet on the future of quantum optimization in enabling our simulations to surpass the limits of classical supercomputing. Financial markets are highly fluid, with dynamics evolving over time. As such we build AI algorithms that adapt and learn continuously, in order to uncover the connections between different financial assets, classes and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored.
  • 12
    NeuralTools

    NeuralTools

    Palisade

    NeuralTools is a sophisticated data mining application that uses neural networks in Microsoft Excel, making accurate new predictions based on the patterns in your known data. NeuralTools imitates brain functions in order to “learn” the structure of your data, taking new inputs and making intelligent predictions. With NeuralTools, your spreadsheet can “think” for you like never before. There are three basic steps in a Neural Networks analysis: training the network on your data, testing the network for accuracy, and making predictions from new data. NeuralTools accomplishes all this automatically in one simple step. NeuralTools automatically updates predictions when input data changes, so you don’t have to manually re-run predictions when you get new data. Combine with Palisade’s Evolver or Excel’s Solver to optimize tough decisions and achieve your goals like no other Neural Networks package can.
    Starting Price: $199 one-time payment
  • 13
    NVIDIA Modulus
    NVIDIA Modulus is a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. Whether you’re looking to get started with AI-driven physics problems or designing digital twin models for complex non-linear, multi-physics systems, NVIDIA Modulus can support your work. Offers building blocks for developing physics machine learning surrogate models that combine both physics and data. The framework is generalizable to different domains and use cases—from engineering simulations to life sciences and from forward simulations to inverse/data assimilation problems. Provides parameterized system representation that solves for multiple scenarios in near real time, letting you train once offline to infer in real time repeatedly.
  • 14
    GPT-4

    GPT-4

    OpenAI

    GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.
    Starting Price: $0.0200 per 1000 tokens
  • 15
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 16
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
    Starting Price: $3.06 per hour
  • 17
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.
  • 18
    JADBio AutoML
    JADBio is a state-of-the-art automated Machine Learning Platform without the need for coding. With its breakthrough algorithms it can solve open problems in machine learning. Anybody can use it and perform a sophisticated and correct machine learning analysis even if they do not know any math, statistics, or coding. It is purpose-built for life science data and particularly molecular data. This means that it can deal with the idiosyncrasies of molecular data such as very low sample size and very high number of measured quantities that could reach to millions. Life scientists need it to understand what are the features and biomarkers that are predictive and important, what is their role, and get intuition about the molecular mechanisms involved. Knowledge discovery is often more important than a predictive model. So, JADBio focuses on feature selection and its interpretation.
  • 19
    ChatGPT Enterprise
    Enterprise-grade security & privacy and the most powerful version of ChatGPT yet. 1. Customer prompts or data are not used for training models 2. Data encryption at rest (AES-256) and in transit (TLS 1.2+) 3. SOC 2 compliant 4. Dedicated admin console and easy bulk member management 5. SSO and Domain Verification 6. Analytics dashboard to understand usage 7. Unlimited, high-speed access to GPT-4 and Advanced Data Analysis* 8. 32k token context windows for 4X longer inputs and memory 9. Shareable chat templates for your company to collaborate
  • 20
    DataMelt

    DataMelt

    jWork.ORG

    DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported. DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.
  • 21
    Whisper

    Whisper

    OpenAI

    We’ve trained and are open-sourcing a neural net called Whisper that approaches human-level robustness and accuracy in English speech recognition. Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. We show that the use of such a large and diverse dataset leads to improved robustness to accents, background noise, and technical language. Moreover, it enables transcription in multiple languages, as well as translation from those languages into English. We are open-sourcing models and inference code to serve as a foundation for building useful applications and for further research on robust speech processing. The Whisper architecture is a simple end-to-end approach, implemented as an encoder-decoder Transformer. Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then passed into an encoder.
  • 22
    Cogniac

    Cogniac

    Cogniac

    Cogniac’s no-code solution enables organizations to capitalize on the latest developments in Artificial Intelligence (AI) and convolutional neural networks to deliver superhuman operational performance. Cogniac’s AI machine vision platform enables enterprise customers to achieve Industry 4.0 standards through visual data management and automation. Cogniac helps organizations’ operations divisions deliver smart continuous improvement. The Cogniac user interface has been designed and built to be operated by a non-technical user. With simplicity at its heart, the drag and drop nature of the Cogniac platform allows subject matter experts to focus on the tasks that drive the most value. Cogniac’s platform can identify defects from as little as 100 labeled images. Once trained by 25 approved and 75 defective images, the Cogniac AI will deliver results that are comparable to a human subject matter expert within hours of set-up.
  • 23
    Altair Knowledge Studio
    Data scientists and business analysts use Altair to generate actionable insight from their data. Knowledge Studio is a market-leading easy to use machine learning and predictive analytics solution that rapidly visualizes data as it quickly generates explainable results - without requiring a single line of code. A recognized analytics leader, Knowledge Studio brings transparency and automation to machine learning with features such as AutoML and explainable AI without restricting how models are configured and tuned, giving you control over model building. Knowledge Studio is designed to enable collaboration across the business. Data scientists and business analysts can complete complex projects in minutes or hours, not weeks or months. Results are easily understood and explained. The ease of use and automation of steps of the modeling process enable data scientists to efficiently develop more machine learning models faster than coding or using other tools.
  • 24
    PredictSense
    PredictSense is an end-to-end Machine Learning platform powered by AutoML to create AI-powered analytical solutions. Fuel the new technological revolution of tomorrow by accelerating machine intelligence. AI is key to unlocking value from enterprise data investments. PredictSense enables businesses to monetize critical data infrastructure and technology investments by creating AI driven advanced analytical solutions rapidly. Empower data science and business teams with advanced capabilities to quickly build and deploy robust technology solutions at scale. Easily integrate AI into the current product ecosystem and fast track GTM for new AI solutions. Incur huge savings in cost, time and effort by building complex ML models in AutoML. PredictSense democratizes AI for every individual in the organization and creates a simple, user-friendly collaboration platform to seamlessly manage critical ML deployments.
  • 25
    Oracle Data Science
    A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results.
  • 26
    Dataiku DSS
    Bring data analysts, engineers, and scientists together. Enable self-service analytics and operationalize machine learning. Get results today and build for tomorrow. Dataiku DSS is the collaborative data science software platform for teams of data scientists, data analysts, and engineers to explore, prototype, build, and deliver their own data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) or a customizable drag-and-drop visual interface at any step of the predictive dataflow prototyping process – from wrangling to analysis to modeling. Profile the data visually at every step of the analysis. Interactively explore and chart your data using 25+ built-in charts. Prepare, enrich, blend, and clean data using 80+ built-in functions. Leverage Machine Learning technologies (Scikit-Learn, MLlib, TensorFlow, Keras, etc.) in a visual UI. Build & optimize models in Python or R and integrate any external ML library through code APIs.
  • 27
    Emly Labs

    Emly Labs

    Emly Labs

    Emly Labs is an AI framework designed to make AI accessible for users at all technical levels through a user-friendly platform. It offers AI project management with tools for guided workflows and automation for faster execution. The platform encourages team collaboration and innovation, provides no-code data preparation, and integrates external data for robust AI models. Emly AutoML automates data processing and model evaluation, reducing human input. It prioritizes transparency, with explainable AI features and robust auditing for compliance. Security measures include data isolation, role-based access, and secure integrations. Additionally, Emly's cost-effective infrastructure allows on-demand resource provisioning and policy management, enhancing experimentation and innovation while reducing costs and risks.
    Starting Price: $99/month
  • 28
    KuantSol

    KuantSol

    KuantSol

    E2E modeling that integrates Business perspective and subject matter expertise with data science (Statistical Models + ML + Business context and objectives). This combination is material to health and competitive advantage of the BFSI. • Models developed on KuantSol are stable, optimal, standardized and can be leveraged for long periods of time. • Standardized model documentation for federal regulators that is Submission-ready. • Purpose-built configuration options at every decision step and a comprehensive output analysis make the end model explainable to auditors, regulators, and executives. Leading ML/AI vendors, for example, offer a few model options and selection criteria. Consulting firms may offer more but would require more time and expert resources; KuantSol offers 150+ • KuantSol advanced configuration enables auto model development.
  • 29
    SensiML Analytics Studio
    Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Create compact algorithms that execute on tiny IoT endpoints, not in the cloud. Collect accurate, traceable, version controlled datasets. Utilize advanced AutoML code-gen to quickly produce autonomous working device code. Choose your interface, level of AI expertise, and retain full access to every aspect of your algorithm. Build edge tuning models that that customize behavior as they see more data. SensiML Analytics Toolkit suite automates each step of the process for creating optimized AI IoT sensor recognition code. The overall workflow uses a growing library of advanced ML and AI algorithms to generate code that can learn from new data either the development phase or once deployed. Non-invasive, rapid disease screening applications utilizing intelligent classification of one or more bio-sensing inputs are critical tools for healthcare decision support.
  • 30
    Arize AI

    Arize AI

    Arize AI

    Automatically discover issues, diagnose problems, and improve models with Arize’s machine learning observability platform. Machine learning systems address mission critical needs for businesses and their customers every day, yet often fail to perform in the real world. Arize is an end-to-end observability platform to accelerate detecting and resolving issues for your AI models at large. Seamlessly enable observability for any model, from any platform, in any environment. Lightweight SDKs to send training, validation, and production datasets. Link real-time or delayed ground truth to predictions. Gain foresight and confidence that your models will perform as expected once deployed. Proactively catch any performance degradation, data/prediction drift, and quality issues before they spiral. Reduce the time to resolution (MTTR) for even the most complex models with flexible, easy-to-use tools for root cause analysis.
  • 31
    Amazon SageMaker Model Monitor
    With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
  • 32
    Google Cloud AutoML
    Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. It relies on Google’s state-of-the-art transfer learning and neural architecture search technology. Cloud AutoML leverages more than 10 years of proprietary Google Research technology to help your machine learning models achieve faster performance and more accurate predictions. Use Cloud AutoML’s simple graphical user interface to train, evaluate, improve, and deploy models based on your data. You’re only a few minutes away from your own custom machine learning model. Google’s human labeling service can put a team of people to work annotating or cleaning your labels to make sure your models are being trained on high-quality data.
  • 33
    Metacoder

    Metacoder

    Wazoo Mobile Technologies LLC

    Metacoder makes processing data faster and easier. Metacoder gives analysts needed flexibility and tools to facilitate data analysis. Data preparation steps such as cleaning are managed reducing the manual inspection time required before you are up and running. Compared to alternatives, is in good company. Metacoder beats similar companies on price and our management is proactively developing based on our customers' valuable feedback. Metacoder is used primarily to assist predictive analytics professionals in their job. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We help organizations distribute their work transparently by enabling model sharing, and we make management of the machine learning pipeline easy to make tweaks. Soon we will be including code free solutions for image, audio, video, and biomedical data.
    Starting Price: $89 per user/month
  • 34
    Snitch AI

    Snitch AI

    Snitch AI

    Quality assurance for machine learning simplified. Snitch removes the noise to surface only the most useful information to improve your models. Track your model’s performance beyond just accuracy with powerful dashboards and analysis. Identify problems in your data pipeline and distribution shifts before they affect your predictions. Stay in production once you’ve deployed and gain visibility on your models & data throughout its cycle. Keep your data secure, cloud, on-prem, private cloud, hybrid, and you decide how to install Snitch. Work within the tools you love and integrate Snitch into your MLops pipeline! Get up and running quickly, we keep installation, learning, and running the product easy as pie. Accuracy can often be misleading. Look into robustness and feature importance to evaluate your models before deploying. Gain actionable insights to improve your models. Compare against historical metrics and your models’ baseline.
    Starting Price: $1,995 per year
  • 35
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 36
    Key Ward

    Key Ward

    Key Ward

    Extract, transform, manage, & process CAD, FE, CFD, and test data effortlessly. Create automatic data pipelines for machine learning, ROM, & 3D deep learning. Removing data science barriers without coding. Key Ward's platform is the first end-to-end engineering no-code solution that redefines how engineers interact with their data, experimental & CAx. Through leveraging engineering data intelligence, our software enables engineers to easily handle their multi-source data, extract direct value with our built-in advanced analytics tools, and custom-build their machine and deep learning models, all under one platform, all with a few clicks. Automatically centralize, update, extract, sort, clean, and prepare your multi-source data for analysis, machine learning, and/or deep learning. Use our advanced analytics tools on your experimental & simulation data to correlate, find dependencies, and identify patterns.
    Starting Price: €9,000 per year
  • 37
    Sixgill Sense
    Every step of the machine learning and computer vision workflow is made simple and fast within one no-code platform. Sense allows anyone to build and deploy AI IoT solutions to any cloud, the edge or on-premise. Learn how Sense provides simplicity, consistency and transparency to AI/ML teams with enough power and depth for ML engineers yet easy enough to use for subject matter experts. Sense Data Annotation optimizes the success of your machine learning models with the fastest, easiest way to label video and image data for high-quality training dataset creation. The Sense platform offers one-touch labeling integration for continuous machine learning at the edge for simplified management of all your AI solutions.
  • 38
    Salford Predictive Modeler (SPM)
    The Salford Predictive Modeler® (SPM) software suite is a highly accurate and ultra-fast platform for developing predictive, descriptive, and analytical models. The Salford Predictive Modeler® software suite includes the CART®, MARS®, TreeNet®, Random Forests® engines, as well as powerful new automation and modeling capabilities not found elsewhere. The SPM software suite’s data mining technologies span classification, regression, survival analysis, missing value analysis, data binning and clustering/segmentation. SPM algorithms are considered to be essential in sophisticated data science circles. The SPM software suite‘s automation accelerates the process of model building by conducting substantial portions of the model exploration and refinement process for the analyst. We package a complete set of results from alternative modeling strategies for easy review.
  • 39
    Orange

    Orange

    University of Ljubljana

    Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration for rapid qualitative analysis with clean visualizations. Graphic user interface allows you to focus on exploratory data analysis instead of coding, while clever defaults make fast prototyping of a data analysis workflow extremely easy. Place widgets on the canvas, connect them, load your datasets and harvest the insight! When teaching data mining, we like to illustrate rather than only explain. And Orange is great at that.
  • 40
    ScoopML

    ScoopML

    ScoopML

    Easy-to-Use Build advanced predictive models without math & coding - in just a few clicks. Complete Experience. From cleaning data to building models to making predictions, we provide you all. Trustworthy. Know the 'why' behind AI decisions and drive business with actionable insights. Data Analytics in minutes, without writing code. The total process of building ML algorithms, explaining results, and predicting outcomes in one single click. Machine Learning in 3 Steps. Go from raw data to actionable analytics without writing a single line of code. Upload your data. Ask questions in plain english. Get the best performing model for your data and Share your results. Increase Customer Productivity. We help Companies to leverage no code Machine learning to improve their Customer Experience.
  • 41
    expoze.io

    expoze.io

    expoze.io

    As humans, we are bad at predicting what will capture our attention. Eye-tracking is helpful and can help us analyze what people see, but it is expensive and time-consuming. That’s why we created expoze.io. An online attention prediction platform that delivers actionable results validating designs in real-time to help you get your work noticed. Our platform was built by leading neuro- and data scientists. We believe creators make better decisions if they can predict and understand what really grabs attention. This way, we can assist marketing, UX/UI and CRO professionals in their creative decision-making processes. Data-driven, actionable and reliable insights that help them to get their designs noticed.
    Starting Price: €19.99/month
  • 42
    NVIDIA DIGITS

    NVIDIA DIGITS

    NVIDIA DIGITS

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
  • 43
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • 44
    Amazon SageMaker Canvas
    Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions.
  • 45
    TruEra

    TruEra

    TruEra

    A machine learning monitoring solution that helps you easily oversee and troubleshoot high model volumes. With explainability accuracy that’s unparalleled and unique analyses that are not available anywhere else, data scientists avoid false alarms and dead ends, addressing critical problems quickly and effectively. Your machine learning models stay optimized, so that your business is optimized. TruEra’s solution is based on an explainability engine that, due to years of dedicated research and development, is significantly more accurate than current tools. TruEra’s enterprise-class AI explainability technology is without peer. The core diagnostic engine is based on six years of research at Carnegie Mellon University and dramatically outperforms competitors. The platform quickly performs sophisticated sensitivity analysis that enables data scientists, business users, and risk and compliance teams to understand exactly how and why a model makes predictions.
  • 46
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 47
    Daria

    Daria

    XBrain

    Daria’s advanced automated features allow users to quickly and easily build predictive models, significantly cutting back on days and weeks of iterative work associated with the traditional machine learning process. Remove financial and technological barriers to build AI systems from scratch for enterprises. Streamline and expedite workflows by lifting weeks of iterative work through automated machine learning for data experts. Get hands-on experience in machine learning with an intuitive GUI for data science beginners. Daria provides various data transformation functions to conveniently construct multiple feature sets. Daria automatically explores through millions of possible combinations of algorithms, modeling techniques and hyperparameters to select the best predictive model. Predictive models built with Daria can be deployed straight to production with a single line of code via Daria’s RESTful API.
  • 48
    Neuralhub

    Neuralhub

    Neuralhub

    Neuralhub is a system that makes working with neural networks easier, helping AI enthusiasts, researchers, and engineers to create, experiment, and innovate in the AI space. Our mission extends beyond providing tools; we're also creating a community, a place to share and work together. We aim to simplify the way we do deep learning today by bringing all the tools, research, and models into a single collaborative space, making AI research, learning, and development more accessible. Build a neural network from scratch or use our library of common network components, layers, architectures, novel research, and pre-trained models to experiment and build something of your own. Construct your neural network with one click. Visually see and interact with every component in the network. Easily tune hyperparameters such as epochs, features, labels and much more.
  • 49
    GPT-4o

    GPT-4o

    OpenAI

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
    Starting Price: $5.00 / 1M tokens
  • 50
    Censius AI Observability Platform
    Censius is an innovative startup in the machine learning and AI space. We bring AI observability to enterprise ML teams. Ensuring that ML models' performance is in check is imperative with the extensive use of machine learning models. Censius is an AI Observability Platform that helps organizations of all scales confidently make their machine-learning models work in production. The company launched its flagship AI observability platform that helps bring accountability and explainability to data science projects. A comprehensive ML monitoring solution helps proactively monitor entire ML pipelines to detect and fix ML issues such as drift, skew, data integrity, and data quality issues. Upon integrating Censius, you can: 1. Monitor and log the necessary model vitals 2. Reduce time-to-recover by detecting issues precisely 3. Explain issues and recovery strategies to stakeholders 4. Explain model decisions 5. Reduce downtime for end-users 6. Build customer trust