Alternatives to NVIDIA Triton Inference Server

Compare NVIDIA Triton Inference Server alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to NVIDIA Triton Inference Server in 2025. Compare features, ratings, user reviews, pricing, and more from NVIDIA Triton Inference Server competitors and alternatives in order to make an informed decision for your business.

  • 1
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
  • 2
    NVIDIA NIM
    Explore the latest optimized AI models, connect AI agents to data with NVIDIA NeMo, and deploy anywhere with NVIDIA NIM microservices. NVIDIA NIM is a set of easy-to-use inference microservices that facilitate the deployment of foundation models across any cloud or data center, ensuring data security and streamlined AI integration. Additionally, NVIDIA AI provides access to the Deep Learning Institute (DLI), offering technical training to gain in-demand skills, hands-on experience, and expert knowledge in AI, data science, and accelerated computing. AI models generate responses and outputs based on complex algorithms and machine learning techniques, and those responses or outputs may be inaccurate, harmful, biased, or indecent. By testing this model, you assume the risk of any harm caused by any response or output of the model. Please do not upload any confidential information or personal data unless expressly permitted. Your use is logged for security purposes.
  • 3
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
  • 4
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 5
    VESSL AI

    VESSL AI

    VESSL AI

    Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.
    Starting Price: $100 + compute/month
  • 6
    Nebius

    Nebius

    Nebius

    Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.
  • 7
    Mystic

    Mystic

    Mystic

    With Mystic you can deploy ML in your own Azure/AWS/GCP account or deploy in our shared GPU cluster. All Mystic features are directly in your own cloud. In a few simple steps, you get the most cost-effective and scalable way of running ML inference. Our shared cluster of GPUs is used by 100s of users simultaneously. Low cost but performance will vary depending on real-time GPU availability. Good AI products need good models and infrastructure; we solve the infrastructure part. A fully managed Kubernetes platform that runs in your own cloud. Open-source Python library and API to simplify your entire AI workflow. You get a high-performance platform to serve your AI models. Mystic will automatically scale up and down GPUs depending on the number of API calls your models receive. You can easily view, edit, and monitor your infrastructure from your Mystic dashboard, CLI, and APIs.
  • 8
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 9
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 10
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 11
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 12
    Groq

    Groq

    Groq

    Groq is on a mission to set the standard for GenAI inference speed, helping real-time AI applications come to life today. An LPU inference engine, with LPU standing for Language Processing Unit, is a new type of end-to-end processing unit system that provides the fastest inference for computationally intensive applications with a sequential component, such as AI language applications (LLMs). The LPU is designed to overcome the two LLM bottlenecks, compute density and memory bandwidth. An LPU has greater computing capacity than a GPU and CPU in regards to LLMs. This reduces the amount of time per word calculated, allowing sequences of text to be generated much faster. Additionally, eliminating external memory bottlenecks enables the LPU inference engine to deliver orders of magnitude better performance on LLMs compared to GPUs. Groq supports standard machine learning frameworks such as PyTorch, TensorFlow, and ONNX for inference.
  • 13
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 14
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
  • 15
    Deep Infra

    Deep Infra

    Deep Infra

    Powerful, self-serve machine learning platform where you can turn models into scalable APIs in just a few clicks. Sign up for Deep Infra account using GitHub or log in using GitHub. Choose among hundreds of the most popular ML models. Use a simple rest API to call your model. Deploy models to production faster and cheaper with our serverless GPUs than developing the infrastructure yourself. We have different pricing models depending on the model used. Some of our language models offer per-token pricing. Most other models are billed for inference execution time. With this pricing model, you only pay for what you use. There are no long-term contracts or upfront costs, and you can easily scale up and down as your business needs change. All models run on A100 GPUs, optimized for inference performance and low latency. Our system will automatically scale the model based on your needs.
    Starting Price: $0.70 per 1M input tokens
  • 16
    Neysa Nebula
    Nebula allows you to deploy and scale your AI projects quickly, easily and cost-efficiently2 on highly robust, on-demand GPU infrastructure. Train and infer your models securely and easily on the Nebula cloud powered by the latest on-demand Nvidia GPUs and create and manage your containerized workloads through Nebula’s user-friendly orchestration layer. Access Nebula’s MLOps and low-code/no-code engines to build and deploy AI use cases for business teams and to deploy AI-powered applications swiftly and seamlessly with little to no coding. Choose between the Nebula containerized AI cloud, your on-prem environment, or any cloud of your choice. Build and scale AI-enabled business use-cases within a matter of weeks, not months, with the Nebula Unify platform.
  • 17
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 18
    GMI Cloud

    GMI Cloud

    GMI Cloud

    Build your generative AI applications in minutes on GMI GPU Cloud. GMI Cloud is more than bare metal. Train, fine-tune, and infer state-of-the-art models. Our clusters are ready to go with scalable GPU containers and preconfigured popular ML frameworks. Get instant access to the latest GPUs for your AI workloads. Whether you need flexible on-demand GPUs or dedicated private cloud instances, we've got you covered. Maximize GPU resources with our turnkey Kubernetes software. Easily allocate, deploy, and monitor GPUs or nodes with our advanced orchestration tools. Customize and serve models to build AI applications using your data. GMI Cloud lets you deploy any GPU workload quickly and easily, so you can focus on running ML models, not managing infrastructure. Launch pre-configured environments and save time on building container images, installing software, downloading models, and configuring environment variables. Or use your own Docker image to fit your needs.
  • 19
    fal.ai

    fal.ai

    fal.ai

    fal is a serverless Python runtime that lets you scale your code in the cloud with no infra management. Build real-time AI applications with lightning-fast inference (under ~120ms). Check out some of the ready-to-use models, they have simple API endpoints ready for you to start your own AI-powered applications. Ship custom model endpoints with fine-grained control over idle timeout, max concurrency, and autoscaling. Use common models such as Stable Diffusion, Background Removal, ControlNet, and more as APIs. These models are kept warm for free. (Don't pay for cold starts) Join the discussion around our product and help shape the future of AI. Automatically scale up to hundreds of GPUs and scale down back to 0 GPUs when idle. Pay by the second only when your code is running. You can start using fal on any Python project by just importing fal and wrapping existing functions with the decorator.
    Starting Price: $0.00111 per second
  • 20
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
  • 21
    ONNX

    ONNX

    ONNX

    ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute.
  • 22
    KServe

    KServe

    KServe

    Highly scalable and standards-based model inference platform on Kubernetes for trusted AI. KServe is a standard model inference platform on Kubernetes, built for highly scalable use cases. Provides performant, standardized inference protocol across ML frameworks. Support modern serverless inference workload with autoscaling including a scale to zero on GPU. Provides high scalability, density packing, and intelligent routing using ModelMesh. Simple and pluggable production serving for production ML serving including prediction, pre/post-processing, monitoring, and explainability. Advanced deployments with the canary rollout, experiments, ensembles, and transformers. ModelMesh is designed for high-scale, high-density, and frequently-changing model use cases. ModelMesh intelligently loads and unloads AI models to and from memory to strike an intelligent trade-off between responsiveness to users and computational footprint.
  • 23
    NVIDIA Picasso
    NVIDIA Picasso is a cloud service for building generative AI–powered visual applications. Enterprises, software creators, and service providers can run inference on their models, train NVIDIA Edify foundation models on proprietary data, or start from pre-trained models to generate image, video, and 3D content from text prompts. Picasso service is fully optimized for GPUs and streamlines training, optimization, and inference on NVIDIA DGX Cloud. Organizations and developers can train NVIDIA’s Edify models on their proprietary data or get started with models pre-trained with our premier partners. Expert denoising network to generate photorealistic 4K images. Temporal layers and novel video denoiser generate high-fidelity videos with temporal consistency. A novel optimization framework for generating 3D objects and meshes with high-quality geometry. Cloud service for building and deploying generative AI-powered image, video, and 3D applications.
  • 24
    NetApp AIPod
    NetApp AIPod is a comprehensive AI infrastructure solution designed to streamline the deployment and management of artificial intelligence workloads. By integrating NVIDIA-validated turnkey solutions, such as NVIDIA DGX BasePOD™ and NetApp's cloud-connected all-flash storage, AIPod consolidates analytics, training, and inference capabilities into a single, scalable system. This convergence enables organizations to rapidly implement AI workflows, from model training to fine-tuning and inference, while ensuring robust data management and security. With preconfigured infrastructure optimized for AI tasks, NetApp AIPod reduces complexity, accelerates time to insights, and supports seamless integration into hybrid cloud environments.
  • 25
    NetMind AI

    NetMind AI

    NetMind AI

    NetMind.AI is a decentralized computing platform and AI ecosystem designed to accelerate global AI innovation. By leveraging idle GPU resources worldwide, it offers accessible and affordable AI computing power to individuals, businesses, and organizations of all sizes. The platform provides a range of services, including GPU rental, serverless inference, and an AI ecosystem that encompasses data processing, model training, inference, and agent development. Users can rent GPUs at competitive prices, deploy models effortlessly with on-demand serverless inference, and access a wide array of open-source AI model APIs with high-throughput, low-latency performance. NetMind.AI also enables contributors to add their idle GPUs to the network, earning NetMind Tokens (NMT) as rewards. These tokens facilitate transactions on the platform, allowing users to pay for services such as training, fine-tuning, inference, and GPU rentals.
  • 26
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 27
    Substrate

    Substrate

    Substrate

    Substrate is the platform for agentic AI. Elegant abstractions and high-performance components, optimized models, vector database, code interpreter, and model router. Substrate is the only compute engine designed to run multi-step AI workloads. Describe your task by connecting components and let Substrate run it as fast as possible. We analyze your workload as a directed acyclic graph and optimize the graph, for example, merging nodes that can be run in a batch. The Substrate inference engine automatically schedules your workflow graph with optimized parallelism, reducing the complexity of chaining multiple inference APIs. No more async programming, just connect nodes and let Substrate parallelize your workload. Our infrastructure guarantees your entire workload runs in the same cluster, often on the same machine. You won’t spend fractions of a second per task on unnecessary data roundtrips and cross-region HTTP transport.
  • 28
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 29
    SquareFactory

    SquareFactory

    SquareFactory

    End-to-end project, model and hosting management platform, which allows companies to convert data and algorithms into holistic, execution-ready AI-strategies. Build, train and manage models securely with ease. Create products that consume AI models from anywhere, any time. Minimize risks of AI investments, while increasing strategic flexibility. Completely automated model testing, evaluation deployment, scaling and hardware load balancing. From real-time, low-latency, high-throughput inference to batch, long-running inference. Pay-per-second-of-use model, with an SLA, and full governance, monitoring and auditing tools. Intuitive interface that acts as a unified hub for managing projects, creating and visualizing datasets, and training models via collaborative and reproducible workflows.
  • 30
    Ori GPU Cloud
    Launch GPU-accelerated instances highly configurable to your AI workload & budget. Reserve thousands of GPUs in a next-gen AI data center for training and inference at scale. The AI world is shifting to GPU clouds for building and launching groundbreaking models without the pain of managing infrastructure and scarcity of resources. AI-centric cloud providers outpace traditional hyperscalers on availability, compute costs and scaling GPU utilization to fit complex AI workloads. Ori houses a large pool of various GPU types tailored for different processing needs. This ensures a higher concentration of more powerful GPUs readily available for allocation compared to general-purpose clouds. Ori is able to offer more competitive pricing year-on-year, across on-demand instances or dedicated servers. When compared to per-hour or per-usage pricing of legacy clouds, our GPU compute costs are unequivocally cheaper to run large-scale AI workloads.
  • 31
    Qubrid AI

    Qubrid AI

    Qubrid AI

    Qubrid AI is an advanced Artificial Intelligence (AI) company with a mission to solve real world complex problems in multiple industries. Qubrid AI’s software suite comprises of AI Hub, a one-stop shop for everything AI models, AI Compute GPU Cloud and On-Prem Appliances and AI Data Connector! Train our inference industry-leading models or your own custom creations, all within a streamlined, user-friendly interface. Test and refine your models with ease, then seamlessly deploy them to unlock the power of AI in your projects. AI Hub empowers you to embark on your AI Journey, from concept to implementation, all in a single, powerful platform. Our leading cutting-edge AI Compute platform harnesses the power of GPU Cloud and On-Prem Server Appliances to efficiently develop and run next generation AI applications. Qubrid team is comprised of AI developers, researchers and partner teams all focused on enhancing this unique platform for the advancement of scientific applications.
  • 32
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
  • 33
    GPUonCLOUD

    GPUonCLOUD

    GPUonCLOUD

    Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.
  • 34
    Amazon SageMaker Feature Store
    Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
  • 35
    IBM Watson Machine Learning
    IBM Watson Machine Learning is a full-service IBM Cloud offering that makes it easy for developers and data scientists to work together to integrate predictive capabilities with their applications. The Machine Learning service is a set of REST APIs that you can call from any programming language to develop applications that make smarter decisions, solve tough problems, and improve user outcomes. Take advantage of machine learning models management (continuous learning system) and deployment (online, batch, streaming). Select any of widely supported machine learning frameworks: TensorFlow, Keras, Caffe, PyTorch, Spark MLlib, scikit learn, xgboost and SPSS. Use the command-line interface and Python client to manage your artifacts. Extend your application with artificial intelligence through the Watson Machine Learning REST API.
  • 36
    Valohai

    Valohai

    Valohai

    Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.
  • 37
    Nscale

    Nscale

    Nscale

    Nscale is the Hyperscaler engineered for AI, offering high-performance computing optimized for training, fine-tuning, and intensive workloads. From our data centers to our software stack, we are vertically integrated in Europe to provide unparalleled performance, efficiency, and sustainability. Access thousands of GPUs tailored to your requirements using our AI cloud platform. Reduce costs, grow revenue, and run your AI workloads more efficiently on a fully integrated platform. Whether you're using Nscale's built-in AI/ML tools or your own, our platform is designed to simplify the journey from development to production. The Nscale Marketplace offers users access to various AI/ML tools and resources, enabling efficient and scalable model development and deployment. Serverless allows seamless, scalable AI inference without the need to manage infrastructure. It automatically scales to meet demand, ensuring low latency and cost-effective inference for popular generative AI models.
  • 38
    Together AI

    Together AI

    Together AI

    Whether prompt engineering, fine-tuning, or training, we are ready to meet your business demands. Easily integrate your new model into your production application using the Together Inference API. With the fastest performance available and elastic scaling, Together AI is built to scale with your needs as you grow. Inspect how models are trained and what data is used to increase accuracy and minimize risks. You own the model you fine-tune, not your cloud provider. Change providers for whatever reason, including price changes. Maintain complete data privacy by storing data locally or in our secure cloud.
    Starting Price: $0.0001 per 1k tokens
  • 39
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 40
    Seldon

    Seldon

    Seldon Technologies

    Deploy machine learning models at scale with more accuracy. Turn R&D into ROI with more models into production at scale, faster, with increased accuracy. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Deploy reduces the time to production by providing production grade inference servers optimized for popular ML framework or custom language wrappers to fit your use cases. Seldon Core Enterprise provides access to cutting-edge, globally tested and trusted open source MLOps software with the reassurance of enterprise-level support. Seldon Core Enterprise is for organizations requiring: - Coverage across any number of ML models deployed plus unlimited users - Additional assurances for models in staging and production - Confidence that their ML model deployments are supported and protected.
  • 41
    Towhee

    Towhee

    Towhee

    You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
  • 42
    SuperDuperDB

    SuperDuperDB

    SuperDuperDB

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands.
  • 43
    Oblivus

    Oblivus

    Oblivus

    Our infrastructure is equipped to meet your computing requirements, be it one or thousands of GPUs, or one vCPU to tens of thousands of vCPUs, we've got you covered. Our resources are readily available to cater to your needs, whenever you need them. Switching between GPU and CPU instances is a breeze with our platform. You have the flexibility to deploy, modify, and rescale your instances according to your needs, without any hassle. Outstanding machine learning performance without breaking the bank. The latest technology at a significantly lower cost. Cutting-edge GPUs are designed to meet the demands of your workloads. Gain access to computational resources that are tailored to suit the intricacies of your models. Leverage our infrastructure to perform large-scale inference and access necessary libraries with our OblivusAI OS. Unleash the full potential of your gaming experience by utilizing our robust infrastructure to play games in the settings of your choice.
  • 44
    Tenstorrent DevCloud
    We developed Tenstorrent DevCloud to give people the opportunity to try their models on our servers without purchasing our hardware. We are building Tenstorrent AI in the cloud so programmers can try our AI solutions. The first log-in is free, after that, you get connected with our team who can help better assess your needs. Tenstorrent is a team of competent and motivated people that came together to build the best computing platform for AI and software 2.0. Tenstorrent is a next-generation computing company with the mission of addressing the rapidly growing computing demands for software 2.0. Headquartered in Toronto, Canada, Tenstorrent brings together experts in the field of computer architecture, basic design, advanced systems, and neural network compilers. ur processors are optimized for neural network inference and training. They can also execute other types of parallel computation. Tenstorrent processors comprise a grid of cores known as Tensix cores.
  • 45
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 46
    Keepsake

    Keepsake

    Replicate

    Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.
  • 47
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 48
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 49
    Roboflow

    Roboflow

    Roboflow

    Roboflow has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of data labeling, model training, or model deployment, Roboflow gives you building blocks to bring custom computer vision solutions to your business.
  • 50
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.