Alternatives to NVIDIA NeMo

Compare NVIDIA NeMo alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to NVIDIA NeMo in 2024. Compare features, ratings, user reviews, pricing, and more from NVIDIA NeMo competitors and alternatives in order to make an informed decision for your business.

  • 1
    NVIDIA NeMo Megatron
    NVIDIA NeMo Megatron is an end-to-end framework for training and deploying LLMs with billions and trillions of parameters. NVIDIA NeMo Megatron, part of the NVIDIA AI platform, offers an easy, efficient, and cost-effective containerized framework to build and deploy LLMs. Designed for enterprise application development, it builds upon the most advanced technologies from NVIDIA research and provides an end-to-end workflow for automated distributed data processing, training large-scale customized GPT-3, T5, and multilingual T5 (mT5) models, and deploying models for inference at scale. Harnessing the power of LLMs is made easy through validated and converged recipes with predefined configurations for training and inference. Customizing models is simplified by the hyperparameter tool, which automatically searches for the best hyperparameter configurations and performance for training and inference on any given distributed GPU cluster configuration.
  • 2
    Megatron-Turing
    Megatron-Turing Natural Language Generation model (MT-NLG), is the largest and the most powerful monolithic transformer English language model with 530 billion parameters. This 105-layer, transformer-based MT-NLG improves upon the prior state-of-the-art models in zero-, one-, and few-shot settings. It demonstrates unmatched accuracy in a broad set of natural language tasks such as, Completion prediction, Reading comprehension, Commonsense reasoning, Natural language inferences, Word sense disambiguation, etc. With the intent of accelerating research on the largest English language model till date and enabling customers to experiment, employ and apply such a large language model on downstream language tasks - NVIDIA is pleased to announce an Early Access program for its managed API service to MT-NLG mode.
  • 3
    GPT-NeoX

    GPT-NeoX

    EleutherAI

    An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library. This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training.
  • 4
    Mistral NeMo

    Mistral NeMo

    Mistral AI

    Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.
  • 5
    NVIDIA AI Foundations
    Impacting virtually every industry, generative AI unlocks a new frontier of opportunities, for knowledge and creative workers, to solve today’s most important challenges. NVIDIA is powering generative AI through an impressive suite of cloud services, pre-trained foundation models, as well as cutting-edge frameworks, optimized inference engines, and APIs to bring intelligence to your enterprise applications. NVIDIA AI Foundations is a set of cloud services that advance enterprise-level generative AI and enable customization across use cases in areas such as text (NVIDIA NeMo™), visual content (NVIDIA Picasso), and biology (NVIDIA BioNeMo™). Unleash the full potential with NeMo, Picasso, and BioNeMo cloud services, powered by NVIDIA DGX™ Cloud, the AI supercomputer. Marketing copy, storyline creation, and global translation in many languages. For news, email, meeting minutes, and information synthesis.
  • 6
    BioNeMo

    BioNeMo

    NVIDIA

    BioNeMo is an AI-powered drug discovery cloud service and framework built on NVIDIA NeMo Megatron for training and deploying large biomolecular transformer AI models at a supercomputing scale. The service includes pre-trained large language models (LLMs) and native support for common file formats for proteins, DNA, RNA, and chemistry, providing data loaders for SMILES for molecular structures and FASTA for amino acid and nucleotide sequences. The BioNeMo framework will also be available for download for running on your own infrastructure. ESM-1, based on Meta AI’s state-of-the-art ESM-1b, and ProtT5 are transformer-based protein language models that can be used to generate learned embeddings for tasks like protein structure and property prediction. OpenFold, a deep learning model for 3D structure prediction of novel protein sequences, will be available in BioNeMo service.
  • 7
    NVIDIA Nemotron
    NVIDIA Nemotron is a family of open-source models developed by NVIDIA, designed to generate synthetic data for training large language models (LLMs) for commercial applications. The Nemotron-4 340B model, in particular, is a significant release by NVIDIA, offering developers a powerful tool to generate high-quality data and filter it based on various attributes using a reward model.
  • 8
    Pixtral 12B

    Pixtral 12B

    Mistral AI

    Pixtral 12B is a pioneering multimodal AI model developed by Mistral AI, designed to process and interpret both text and image data seamlessly. This model marks a significant advancement in the integration of different data types, allowing for more intuitive interactions and enhanced content creation capabilities. With a foundation built upon Mistral's NeMo 12B text model, Pixtral 12B incorporates an additional vision adapter that adds approximately 400 million parameters, expanding its ability to handle visual inputs up to 1024 x 1024 pixels in size. This model supports a variety of applications, from detailed image analysis to answering questions about visual content, showcasing its versatility in real-world applications. Pixtral 12B's architecture not only supports a large context window of 128k tokens but also employs innovative techniques like GeLU activation and 2D RoPE for its vision components, making it a robust tool for developers and enterprises aiming to leverage AI.
  • 9
    CodeQwen

    CodeQwen

    QwenLM

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
  • 10
    Alpa

    Alpa

    Alpa

    Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.
  • 11
    YandexGPT
    Take advantage of the capabilities of generative language models to improve and optimize your applications and web services. Get an aggregated result of accumulated textual data whether it be information from work chats, user reviews, or other types of data. YandexGPT will help both summarize and interpret the information. Speed up text creation as you improve their quality and style. Create template texts for newsletters, product descriptions for online stores and other applications. Develop a chatbot for your support service: teach the bot to answer various user questions, both common and more complicated. Use the API to integrate the service with your applications and automate processes.
  • 12
    Phi-3

    Phi-3

    Microsoft

    A family of powerful, small language models (SLMs) with groundbreaking performance at low cost and low latency. Maximize AI capabilities, lower resource use, and ensure cost-effective generative AI deployments across your applications. Accelerate response times in real-time interactions, autonomous systems, apps requiring low latency, and other critical scenarios. Run Phi-3 in the cloud, at the edge, or on device, resulting in greater deployment and operation flexibility. Phi-3 models were developed in accordance with Microsoft AI principles: accountability, transparency, fairness, reliability and safety, privacy and security, and inclusiveness. Operate effectively in offline environments where data privacy is paramount or connectivity is limited. Generate more coherent, accurate, and contextually relevant outputs with an expanded context window. Deploy at the edge to deliver faster responses.
  • 13
    Sarvam AI

    Sarvam AI

    Sarvam AI

    We are developing efficient large language models for India's diverse linguistic culture and enabling new GenAI applications through bespoke enterprise models. We are building an enterprise-grade platform that lets you develop and evaluate your company’s GenAI apps. We believe in the power of open-source to accelerate AI innovation and will be contributing to open-source models and datasets, as well be leading efforts for large-scale data curation in public-good space. We are a dynamic and close-knit team of AI pioneers, blending expertise in research, engineering, product design, and business operations. Our diverse backgrounds unite under a shared commitment to excellence in science and the creation of societal impact. We foster an environment where tackling complex tech challenges is not just a job, but a passion.
  • 14
    EXAONE
    EXAONE is a large language model developed by LG AI Research with the goal of nurturing "Expert AI" in multiple domains. The Expert AI Alliance was formed as a collaborative effort among leading companies in various fields to advance the capabilities of EXAONE. Partner companies within the alliance will serve as mentors, providing skills, knowledge, and data to help EXAONE gain expertise in relevant domains. EXAONE, described as being akin to a college student who has completed general elective courses, requires additional intensive training to become an expert in specific areas. LG AI Research has already demonstrated EXAONE's abilities through real-world applications, such as Tilda, an AI human artist that debuted at New York Fashion Week, as well as AI applications for summarizing customer service conversations and extracting information from complex academic papers.
  • 15
    PanGu-Σ

    PanGu-Σ

    Huawei

    Significant advancements in the field of natural language processing, understanding, and generation have been achieved through the expansion of large language models. This study introduces a system which utilizes Ascend 910 AI processors and the MindSpore framework to train a language model with over a trillion parameters, specifically 1.085T, named PanGu-{\Sigma}. This model, which builds upon the foundation laid by PanGu-{\alpha}, takes the traditionally dense Transformer model and transforms it into a sparse one using a concept known as Random Routed Experts (RRE). The model was efficiently trained on a dataset of 329 billion tokens using a technique called Expert Computation and Storage Separation (ECSS), leading to a 6.3-fold increase in training throughput via heterogeneous computing. Experimentation indicates that PanGu-{\Sigma} sets a new standard in zero-shot learning for various downstream Chinese NLP tasks.
  • 16
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.
  • 17
    StarCoder

    StarCoder

    BigCode

    StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.
  • 18
    Baichuan-13B

    Baichuan-13B

    Baichuan Intelligent Technology

    Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.
  • 19
    Codestral

    Codestral

    Mistral AI

    We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.
  • 20
    OPT

    OPT

    Meta

    Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.
  • 21
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
  • 22
    JinaChat

    JinaChat

    Jina AI

    Experience JinaChat, a pioneering LLM service tailored for pro users. JinaChat ushers in a new era of multimodal chat capabilities, extending beyond text to incorporate images and more. Delight in our offer of free short interactions under 100 tokens. Our API empowers developers to leverage long conversation histories and eliminate redundant prompts to build complex applications. Dive headfirst into the future of LLM services with JinaChat, where conversations are multimodal, long-memory, and affordable. Modern LLM applications often hinge on lengthy prompts or extensive memory, leading to high costs when similar prompts are repeatedly sent to the server with only minor changes. JinaChat's API solves this problem by letting you carry forward previous conversations without resending the entire prompt. This saves you both time and money, making it the perfect tool for developing complex applications like AutoGPT.
    Starting Price: $9.99 per month
  • 23
    Inflection AI

    Inflection AI

    Inflection AI

    Inflection AI is a cutting-edge artificial intelligence research and development company focused on creating advanced AI systems designed to interact with humans in more natural, intuitive ways. Founded in 2022 by entrepreneurs such as Mustafa Suleyman, one of the co-founders of DeepMind, and Reid Hoffman, co-founder of LinkedIn, the company's mission is to make powerful AI more accessible and aligned with human values. Inflection AI specializes in building large-scale language models that enhance human-AI communication, aiming to transform industries ranging from customer service to personal productivity through intelligent, responsive, and ethically designed AI systems. The company's focus on safety, transparency, and user control ensures that their innovations contribute positively to society while addressing potential risks associated with AI technology.
  • 24
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
  • 25
    GradientJ

    GradientJ

    GradientJ

    GradientJ provides everything you need to build large language model applications in minutes and manage them forever. Discover and maintain the best prompts by saving versions and comparing them across benchmark examples. Orchestrate and manage complex applications by chaining prompts and knowledge bases into complex APIs. Enhance the accuracy of your models by integrating them with your proprietary data.
  • 26
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
  • 27
    Jurassic-1

    Jurassic-1

    AI21 Labs

    Jurassic-1 models come in two sizes, where the Jumbo version, at 178B parameters, is the largest and most sophisticated language model ever released for general use by developers. AI21 Studio is currently in open beta, allowing anyone to sign up and immediately start querying Jurassic-1 using our API and interactive web environment. Our mission at AI21 Labs is to fundamentally reimagine the way humans read and write by introducing machines as thought partners, and the only way we can achieve this is if we take on this challenge together. We’ve been researching language models since our Mesozoic Era (aka 2017 😉). Jurassic-1 builds on this research, and it is the first generation of models we’re making available for widespread use.
  • 28
    LUIS

    LUIS

    Microsoft

    Language Understanding (LUIS): A machine learning-based service to build natural language into apps, bots, and IoT devices. Quickly create enterprise-ready, custom models that continuously improve. Add natural language to your apps. Designed to identify valuable information in conversations, LUIS interprets user goals (intents) and distills valuable information from sentences (entities), for a high quality, nuanced language model. LUIS integrates seamlessly with the Azure Bot Service, making it easy to create a sophisticated bot. Powerful developer tools are combined with customizable pre-built apps and entity dictionaries, such as Calendar, Music, and Devices, so you can build and deploy a solution more quickly. Dictionaries are mined from the collective knowledge of the web and supply billions of entries, helping your model to correctly identify valuable information from user conversations. Active learning is used to continuously improve the quality of the models.
  • 29
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 30
    Cohere

    Cohere

    Cohere AI

    Build natural language understanding and generation into your product with a few lines of code. The Cohere API provides access to models that read billions of web pages and learn to understand the meaning, sentiment, and intent of the words we use. Use the Cohere API to write human-like text by completing a prompt or filling in blanks. You can write copy, generate code, summarize text, and more. Compute the likelihood of text and retrieve representations from the model. Use the likelihood API to filter text based on chosen categories or selected criteria. With representations, you can train your own downstream models on a wide variety of domain-specific natural language tasks. The Cohere API can compute the similarity between pieces of text, and make categorical predictions by comparing the likelihood of different text options. The model has multiple lenses through which to view ideas, so that it can recognize abstract similarities between concepts as distinct as DNA and computers.
    Starting Price: $0.40 / 1M Tokens
  • 31
    PaLM

    PaLM

    Google

    PaLM API is an easy and safe way to build on top of our best language models. Today, we’re making an efficient model available, in terms of size and capabilities, and we’ll add other sizes soon. The API also comes with an intuitive tool called MakerSuite, which lets you quickly prototype ideas and, over time, will have features for prompt engineering, synthetic data generation and custom-model tuning — all supported by robust safety tools. Select developers can access the PaLM API and MakerSuite in Private Preview today, and stay tuned for our waitlist soon.
  • 32
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
  • 33
    Qwen

    Qwen

    Alibaba

    Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
  • 34
    Command R+
    Command R+ is Cohere's newest large language model, optimized for conversational interaction and long-context tasks. It aims at being extremely performant, enabling companies to move beyond proof of concept and into production. We recommend using Command R+ for those workflows that lean on complex RAG functionality and multi-step tool use (agents). Command R, on the other hand, is great for simpler retrieval augmented generation (RAG) and single-step tool use tasks, as well as applications where price is a major consideration.
  • 35
    Amazon Titan
    Exclusive to Amazon Bedrock, the Amazon Titan family of models incorporates Amazon’s 25 years of experience innovating with AI and machine learning across its business. Amazon Titan foundation models (FMs) provide customers with a breadth of high-performing image, multimodal, and text model choices, via a fully managed API. Amazon Titan models are created by AWS and pretrained on large datasets, making them powerful, general-purpose models built to support a variety of use cases, while also supporting the responsible use of AI. Use them as is or privately customize them with your own data. Amazon Titan Text Premier is a powerful and advanced model within the Amazon Titan Text family, designed to deliver superior performance across a wide range of enterprise applications. This model is optimized for integration with Agents and Knowledge Bases for Amazon Bedrock, making it an ideal option for building interactive generative AI applications.
  • 36
    Chinchilla

    Chinchilla

    Google DeepMind

    Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.
  • 37
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1 Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
  • 38
    IBM Granite
    IBM® Granite™ is a family of artificial intelligence (AI) models purpose-built for business, engineered from scratch to help ensure trust and scalability in AI-driven applications. Open source Granite models are available today. We make AI as accessible as possible for as many developers as possible. That’s why we have open-sourced core Granite Code, Time Series, Language, and GeoSpatial models and made them available on Hugging Face under permissive Apache 2.0 license that enables broad, unencumbered commercial usage. All Granite models are trained on carefully curated data, with industry-leading levels of transparency about the data that went into them. We have also open-sourced the tools we use to ensure the data is high quality and up to the standards that enterprise-grade applications demand.
  • 39
    Hermes 3

    Hermes 3

    Nous Research

    Experiment, and push the boundaries of individual alignment, artificial consciousness, open-source software, and decentralization, in ways that monolithic companies and governments are too afraid to try. Hermes 3 contains advanced long-term context retention and multi-turn conversation capability, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Our training data aggressively encourages the model to follow the system and instruction prompts exactly and in an adaptive manner. Hermes 3 was created by fine-tuning Llama 3.1 8B, 70B, and 405B, and training on a dataset of primarily synthetically generated responses. The model boasts comparable and superior performance to Llama 3.1 while unlocking deeper capabilities in reasoning and creativity. Hermes 3 is a series of instruct and tool-use models with strong reasoning and creative abilities.
  • 40
    GPT-4o mini
    A small model with superior textual intelligence and multimodal reasoning. GPT-4o mini enables a broad range of tasks with its low cost and latency, such as applications that chain or parallelize multiple model calls (e.g., calling multiple APIs), pass a large volume of context to the model (e.g., full code base or conversation history), or interact with customers through fast, real-time text responses (e.g., customer support chatbots). Today, GPT-4o mini supports text and vision in the API, with support for text, image, video and audio inputs and outputs coming in the future. The model has a context window of 128K tokens, supports up to 16K output tokens per request, and has knowledge up to October 2023. Thanks to the improved tokenizer shared with GPT-4o, handling non-English text is now even more cost effective.
  • 41
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
  • 42
    Martian

    Martian

    Martian

    By using the best-performing model for each request, we can achieve higher performance than any single model. Martian outperforms GPT-4 across OpenAI's evals (open/evals). We turn opaque black boxes into interpretable representations. Our router is the first tool built on top of our model mapping method. We are developing many other applications of model mapping including turning transformers from indecipherable matrices into human-readable programs. If a company experiences an outage or high latency period, automatically reroute to other providers so your customers never experience any issues. Determine how much you could save by using the Martian Model Router with our interactive cost calculator. Input your number of users, tokens per session, and sessions per month, and specify your cost/quality tradeoff.
  • 43
    Mixtral 8x22B

    Mixtral 8x22B

    Mistral AI

    Mixtral 8x22B is our latest open model. It sets a new standard for performance and efficiency within the AI community. It is a sparse Mixture-of-Experts (SMoE) model that uses only 39B active parameters out of 141B, offering unparalleled cost efficiency for its size. It is fluent in English, French, Italian, German, and Spanish. It has strong mathematics and coding capabilities. It is natively capable of function calling; along with the constrained output mode implemented on la Plateforme, this enables application development and tech stack modernization at scale. Its 64K tokens context window allows precise information recall from large documents. We build models that offer unmatched cost efficiency for their respective sizes, delivering the best performance-to-cost ratio within models provided by the community. Mixtral 8x22B is a natural continuation of our open model family. Its sparse activation patterns make it faster than any dense 70B model.
  • 44
    LaMDA

    LaMDA

    Google

    LaMDA, our latest research breakthrough, adds pieces to one of the most tantalizing sections of that puzzle: conversation. While conversations tend to revolve around specific topics, their open-ended nature means they can start in one place and end up somewhere completely different. A chat with a friend about a TV show could evolve into a discussion about the country where the show was filmed before settling on a debate about that country’s best regional cuisine. That meandering quality can quickly stump modern conversational agents (commonly known as chatbots), which tend to follow narrow, pre-defined paths. But LaMDA — short for “Language Model for Dialogue Applications” — can engage in a free-flowing way about a seemingly endless number of topics, an ability we think could unlock more natural ways of interacting with technology and entirely new categories of helpful applications.
  • 45
    Flip AI

    Flip AI

    Flip AI

    Our large language model (LLM) can understand and reason through any and all observability data, including unstructured data, so that you can rapidly restore software and systems to health. Our LLM has been trained to understand and mitigate thousands of critical incidents, across every type of architecture imaginable – giving enterprise developers access to the world’s best debugging expert. Our LLM was built to solve the hardest part of the software engineering process – debugging production incidents. Our model requires no training and works on any observability data system. It can learn based on feedback and finetune based on past incidents and patterns in your environment while keeping your data in your boundaries. This means you are resolving critical incidents using Flip in seconds.
  • 46
    GPT-4V (Vision)
    GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs.
  • 47
    Med-PaLM 2

    Med-PaLM 2

    Google Cloud

    Healthcare breakthroughs change the world and bring hope to humanity through scientific rigor, human insight, and compassion. We believe AI can contribute to this, with thoughtful collaboration between researchers, healthcare organizations, and the broader ecosystem. Today, we're sharing exciting progress on these initiatives, with the announcement of limited access to Google’s medical large language model, or LLM, called Med-PaLM 2. It will be available in the coming weeks to a select group of Google Cloud customers for limited testing, to explore use cases and share feedback as we investigate safe, responsible, and meaningful ways to use this technology. Med-PaLM 2 harnesses the power of Google’s LLMs, aligned to the medical domain to more accurately and safely answer medical questions. As a result, Med-PaLM 2 was the first LLM to perform at an “expert” test-taker level performance on the MedQA dataset of US Medical Licensing Examination (USMLE)-style questions.
  • 48
    NLP Cloud

    NLP Cloud

    NLP Cloud

    Fast and accurate AI models suited for production. Highly-available inference API leveraging the most advanced NVIDIA GPUs. We selected the best open-source natural language processing (NLP) models from the community and deployed them for you. Fine-tune your own models - including GPT-J - or upload your in-house custom models, and deploy them easily to production. Upload or Train/Fine-Tune your own AI models - including GPT-J - from your dashboard, and use them straight away in production without worrying about deployment considerations like RAM usage, high-availability, scalability... You can upload and deploy as many models as you want to production.
    Starting Price: $29 per month
  • 49
    NVIDIA Picasso
    NVIDIA Picasso is a cloud service for building generative AI–powered visual applications. Enterprises, software creators, and service providers can run inference on their models, train NVIDIA Edify foundation models on proprietary data, or start from pre-trained models to generate image, video, and 3D content from text prompts. Picasso service is fully optimized for GPUs and streamlines training, optimization, and inference on NVIDIA DGX Cloud. Organizations and developers can train NVIDIA’s Edify models on their proprietary data or get started with models pre-trained with our premier partners. Expert denoising network to generate photorealistic 4K images. Temporal layers and novel video denoiser generate high-fidelity videos with temporal consistency. A novel optimization framework for generating 3D objects and meshes with high-quality geometry. Cloud service for building and deploying generative AI-powered image, video, and 3D applications.
  • 50
    NVIDIA Omniverse ACE
    NVIDIA Omniverse™ Avatar Cloud Engine (ACE) is a suite of real-time AI solutions for end-to-end development and deployment of interactive avatars and digital human applications at-scale. Enjoy realistic, advanced avatar development without the need for specialized expertise, equipment, or manually intensive workflows. With cloud-native AI microservices and AI workflows like Tokkio, Omniverse ACE enables you to build realistic avatars quickly. Bring your avatars to life using rich software tools and APIs, including Omniverse Audio2Face for simplified 3D character animation, Live Portrait for 2D image animation, Conversational AI solutions like NVIDIA Riva for natural speech- and translation-AI-based interaction, and NVIDIA NeMo for natural language processing. Build, configure, and deploy your avatar application across any engine in any public or private cloud. Whether you have real-time or offline requirements, Omniverse ACE enables you to develop and deploy your avatar.