6 Integrations with Modulos AI Governance Platform
View a list of Modulos AI Governance Platform integrations and software that integrates with Modulos AI Governance Platform below. Compare the best Modulos AI Governance Platform integrations as well as features, ratings, user reviews, and pricing of software that integrates with Modulos AI Governance Platform. Here are the current Modulos AI Governance Platform integrations in 2025:
-
1
Google Cloud Platform
Google
Google Cloud is a cloud-based service that allows you to create anything from simple websites to complex applications for businesses of all sizes. New customers get $300 in free credits to run, test, and deploy workloads. All customers can use 25+ products for free, up to monthly usage limits. Use Google's core infrastructure, data analytics & machine learning. Secure and fully featured for all enterprises. Tap into big data to find answers faster and build better products. Grow from prototype to production to planet-scale, without having to think about capacity, reliability or performance. From virtual machines with proven price/performance advantages to a fully managed app development platform. Scalable, resilient, high performance object storage and databases for your applications. State-of-the-art software-defined networking products on Google’s private fiber network. Fully managed data warehousing, batch and stream processing, data exploration, Hadoop/Spark, and messaging.Starting Price: Free ($300 in free credits) -
2
Amazon Web Services (AWS)
Amazon
Amazon Web Services (AWS) is the world’s most comprehensive cloud platform, trusted by millions of customers across industries. From startups to global enterprises and government agencies, AWS provides on-demand solutions for compute, storage, networking, AI, analytics, and more. The platform empowers organizations to innovate faster, reduce costs, and scale globally with unmatched flexibility and reliability. With services like Amazon EC2 for compute, Amazon S3 for storage, SageMaker for AI/ML, and CloudFront for content delivery, AWS covers nearly every business and technical need. Its global infrastructure spans 120 availability zones across 38 regions, ensuring resilience, compliance, and security. Backed by the largest community of customers, partners, and developers, AWS continues to lead the cloud industry in innovation and operational expertise. -
3
Dataiku
Dataiku
Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries. -
4
Azure Cloud Services
Microsoft
Build the web and cloud applications you need on your terms while using the many languages we support. Simplify the management of your applications with cloud services while ensuring high availability. Scale your environment automatically based on demand and reduce costs. Automate operating system and application updates to increase security. Take advantage of integrated health monitoring and load balancing. Focus on your application, not the underlying cloud infrastructure. Highly available and massively scalable platform for your applications and APIs. Accelerated application deployment. Autoscaling of your cloud environment to optimize costs and improve performance. Integrated health monitoring and load balancing with dashboards and real-time alerts. Excellent development experience using the Azure SDK, which integrates seamlessly with Visual Studio. Build and deploy powerful web and cloud applications and services in minutes with Azure Cloud Services. -
5
MLflow
MLflow
MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects. -
6
Cloudera
Cloudera
Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
- Previous
- You're on page 1
- Next