Alternatives to Mistral 7B
Compare Mistral 7B alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Mistral 7B in 2026. Compare features, ratings, user reviews, pricing, and more from Mistral 7B competitors and alternatives in order to make an informed decision for your business.
-
1
Mistral AI
Mistral AI
Mistral AI is a pioneering artificial intelligence startup specializing in open-source generative AI. The company offers a range of customizable, enterprise-grade AI solutions deployable across various platforms, including on-premises, cloud, edge, and devices. Flagship products include "Le Chat," a multilingual AI assistant designed to enhance productivity in both personal and professional contexts, and "La Plateforme," a developer platform that enables the creation and deployment of AI-powered applications. Committed to transparency and innovation, Mistral AI positions itself as a leading independent AI lab, contributing significantly to open-source AI and policy development.Starting Price: Free -
2
Pixtral Large
Mistral AI
Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.Starting Price: Free -
3
Phi-2
Microsoft
We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models. -
4
Phi-3
Microsoft
A family of powerful, small language models (SLMs) with groundbreaking performance at low cost and low latency. Maximize AI capabilities, lower resource use, and ensure cost-effective generative AI deployments across your applications. Accelerate response times in real-time interactions, autonomous systems, apps requiring low latency, and other critical scenarios. Run Phi-3 in the cloud, at the edge, or on device, resulting in greater deployment and operation flexibility. Phi-3 models were developed in accordance with Microsoft AI principles: accountability, transparency, fairness, reliability and safety, privacy and security, and inclusiveness. Operate effectively in offline environments where data privacy is paramount or connectivity is limited. Generate more coherent, accurate, and contextually relevant outputs with an expanded context window. Deploy at the edge to deliver faster responses. -
5
Phi-4
Microsoft
Phi-4 is a 14B parameter state-of-the-art small language model (SLM) that excels at complex reasoning in areas such as math, in addition to conventional language processing. Phi-4 is the latest member of our Phi family of small language models and demonstrates what’s possible as we continue to probe the boundaries of SLMs. Phi-4 is currently available on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and will be available on Hugging Face. Phi-4 outperforms comparable and larger models on math related reasoning due to advancements throughout the processes, including the use of high-quality synthetic datasets, curation of high-quality organic data, and post-training innovations. Phi-4 continues to push the frontier of size vs quality. -
6
Qwen
Alibaba
Qwen is a powerful, free AI assistant built on the advanced Qwen model series, designed to help anyone with creativity, research, problem-solving, and everyday tasks. While Qwen Chat is the main interface for most users, Qwen itself powers a broad range of intelligent capabilities including image generation, deep research, website creation, advanced reasoning, and context-aware search. Its multimodal intelligence enables Qwen to understand and process text, images, audio, and video simultaneously for richer insights. Qwen is available on web, desktop, and mobile, ensuring seamless access across all devices. For developers, the Qwen API provides OpenAI-compatible endpoints, making integration simple and allowing Qwen’s intelligence to power apps, services, and automation. Whether you're chatting through Qwen Chat or building with the Qwen API, Qwen delivers fast, flexible, and highly capable AI support.Starting Price: Free -
7
Qwen-7B
Alibaba
Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.Starting Price: Free -
8
Qwen2
Alibaba
Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.Starting Price: Free -
9
Teuken 7B
OpenGPT-X
Teuken-7B is a multilingual, open source language model developed under the OpenGPT-X initiative, specifically designed to cater to Europe's diverse linguistic landscape. It has been trained on a dataset comprising over 50% non-English texts, encompassing all 24 official languages of the European Union, ensuring robust performance across these languages. A key innovation in Teuken-7B is its custom multilingual tokenizer, optimized for European languages, which enhances training efficiency and reduces inference costs compared to standard monolingual tokenizers. The model is available in two versions, Teuken-7B-Base, the foundational pre-trained model, and Teuken-7B-Instruct, which has undergone instruction tuning for improved performance in following user prompts. Both versions are accessible on Hugging Face, promoting transparency and collaboration within the AI community. The development of Teuken-7B underscores a commitment to creating AI models that reflect Europe's diversity.Starting Price: Free -
10
Taam Cloud
Taam Cloud
Taam Cloud is a powerful AI API platform designed to help businesses and developers seamlessly integrate AI into their applications. With enterprise-grade security, high-performance infrastructure, and a developer-friendly approach, Taam Cloud simplifies AI adoption and scalability. Taam Cloud is an AI API platform that provides seamless integration of over 200 powerful AI models into applications, offering scalable solutions for both startups and enterprises. With products like the AI Gateway, Observability tools, and AI Agents, Taam Cloud enables users to log, trace, and monitor key AI metrics while routing requests to various models with one fast API. The platform also features an AI Playground for testing models in a sandbox environment, making it easier for developers to experiment and deploy AI-powered solutions. Taam Cloud is designed to offer enterprise-grade security and compliance, ensuring businesses can trust it for secure AI operations.Starting Price: $10/month -
11
gpt-oss-120b
OpenAI
gpt-oss-120b is a reasoning model engineered for deep, transparent thinking, delivering full chain-of-thought explanations, adjustable reasoning depth, and structured outputs, while natively invoking tools like web search and Python execution via the API. Built to slot seamlessly into self-hosted or edge deployments, it eliminates dependence on proprietary infrastructure. Although it includes default safety guardrails, its open-weight architecture allows fine-tuning that could override built-in controls, so implementers are responsible for adding input filtering, output monitoring, and governance measures to achieve enterprise-grade security. As a community–driven model card rather than a managed service spec, it emphasizes transparency, customization, and the need for downstream safety practices. -
12
gpt-oss-20b
OpenAI
gpt-oss-20b is a 20-billion-parameter, text-only reasoning model released under the Apache 2.0 license and governed by OpenAI’s gpt-oss usage policy, built to enable seamless integration into custom AI workflows via the Responses API without reliance on proprietary infrastructure. Trained for robust instruction following, it supports adjustable reasoning effort, full chain-of-thought outputs, and native tool use (including web search and Python execution), producing structured, explainable answers. Developers must implement their own deployment safeguards, such as input filtering, output monitoring, and usage policies, to match the system-level protections of hosted offerings and mitigate risks from malicious or unintended behaviors. Its open-weight design makes it ideal for on-premises or edge deployments where control, customization, and transparency are paramount. -
13
Command R
Cohere AI
Command’s model outputs come with clear citations that mitigate the risk of hallucinations and enable the surfacing of additional context from the source materials. Command can write product descriptions, help draft emails, suggest example press releases, and much more. Ask Command multiple questions about a document to assign a category to the document, extract a piece of information, or answer a general question about the document. Where answering a few questions about a document can save you a few minutes, doing it for thousands of documents can save a company years. This family of scalable models balances high efficiency with strong accuracy to enable enterprises to move from proof of concept into production-grade AI. -
14
Command R+
Cohere AI
Command R+ is Cohere's newest large language model, optimized for conversational interaction and long-context tasks. It aims at being extremely performant, enabling companies to move beyond proof of concept and into production. We recommend using Command R+ for those workflows that lean on complex RAG functionality and multi-step tool use (agents). Command R, on the other hand, is great for simpler retrieval augmented generation (RAG) and single-step tool use tasks, as well as applications where price is a major consideration.Starting Price: Free -
15
DeepSeek
DeepSeek
DeepSeek is a cutting-edge AI assistant powered by the advanced DeepSeek-V3 model, featuring over 600 billion parameters for exceptional performance. Designed to compete with top global AI systems, it offers fast responses and a wide range of features to make everyday tasks easier and more efficient. Available across multiple platforms, including iOS, Android, and the web, DeepSeek ensures accessibility for users everywhere. The app supports multiple languages and has been continually updated to improve functionality, add new language options, and resolve issues. With its seamless performance and versatility, DeepSeek has garnered positive feedback from users worldwide.Starting Price: Free -
16
Falcon Mamba 7B
Technology Innovation Institute (TII)
Falcon Mamba 7B is the first open-source State Space Language Model (SSLM), introducing a groundbreaking architecture for Falcon models. Recognized as the top-performing open-source SSLM worldwide by Hugging Face, it sets a new benchmark in AI efficiency. Unlike traditional transformers, SSLMs operate with minimal memory requirements and can generate extended text sequences without additional overhead. Falcon Mamba 7B surpasses leading transformer-based models, including Meta’s Llama 3.1 8B and Mistral’s 7B, showcasing superior performance. This innovation underscores Abu Dhabi’s commitment to advancing AI research and development on a global scale.Starting Price: Free -
17
Llama 3
Meta
We’ve integrated Llama 3 into Meta AI, our intelligent assistant, that expands the ways people can get things done, create and connect with Meta AI. You can see first-hand the performance of Llama 3 by using Meta AI for coding tasks and problem solving. Whether you're developing agents, or other AI-powered applications, Llama 3 in both 8B and 70B will offer the capabilities and flexibility you need to develop your ideas. With the release of Llama 3, we’ve updated the Responsible Use Guide (RUG) to provide the most comprehensive information on responsible development with LLMs. Our system-centric approach includes updates to our trust and safety tools with Llama Guard 2, optimized to support the newly announced taxonomy published by MLCommons expanding its coverage to a more comprehensive set of safety categories, code shield, and Cybersec Eval 2.Starting Price: Free -
18
Mathstral
Mistral AI
As a tribute to Archimedes, whose 2311th anniversary we’re celebrating this year, we are proud to release our first Mathstral model, a specific 7B model designed for math reasoning and scientific discovery. The model has a 32k context window published under the Apache 2.0 license. We’re contributing Mathstral to the science community to bolster efforts in advanced mathematical problems requiring complex, multi-step logical reasoning. The Mathstral release is part of our broader effort to support academic projects, it was produced in the context of our collaboration with Project Numina. Akin to Isaac Newton in his time, Mathstral stands on the shoulders of Mistral 7B and specializes in STEM subjects. It achieves state-of-the-art reasoning capacities in its size category across various industry-standard benchmarks. In particular, it achieves 56.6% on MATH and 63.47% on MMLU, with the following MMLU performance difference by subject between Mathstral 7B and Mistral 7B.Starting Price: Free -
19
Mixtral 8x22B
Mistral AI
Mixtral 8x22B is our latest open model. It sets a new standard for performance and efficiency within the AI community. It is a sparse Mixture-of-Experts (SMoE) model that uses only 39B active parameters out of 141B, offering unparalleled cost efficiency for its size. It is fluent in English, French, Italian, German, and Spanish. It has strong mathematics and coding capabilities. It is natively capable of function calling; along with the constrained output mode implemented on la Plateforme, this enables application development and tech stack modernization at scale. Its 64K tokens context window allows precise information recall from large documents. We build models that offer unmatched cost efficiency for their respective sizes, delivering the best performance-to-cost ratio within models provided by the community. Mixtral 8x22B is a natural continuation of our open model family. Its sparse activation patterns make it faster than any dense 70B model.Starting Price: Free -
20
Mixtral 8x7B
Mistral AI
Mixtral 8x7B is a high-quality sparse mixture of experts model (SMoE) with open weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference. It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs. In particular, it matches or outperforms GPT-3.5 on most standard benchmarks.Starting Price: Free -
21
Mistral Medium 3.1
Mistral AI
Mistral Medium 3.1 is the latest frontier-class multimodal foundation model released in August 2025, designed to deliver advanced reasoning, coding, and multimodal capabilities while dramatically reducing deployment complexity and costs. It builds on the highly efficient architecture of Mistral Medium 3, renowned for offering state-of-the-art performance at up to 8-times lower cost than leading large models, enhancing tone consistency, responsiveness, and accuracy across diverse tasks and modalities. The model supports deployment across hybrid environments, on-premises systems, and virtual private clouds, and it achieves competitive performance relative to high-end models such as Claude Sonnet 3.7, Llama 4 Maverick, and Cohere Command A. Ideal for professional and enterprise use cases, Mistral Medium 3.1 excels in coding, STEM reasoning, language understanding, and multimodal comprehension, while maintaining broad compatibility with custom workflows and infrastructure. -
22
Mistral NeMo
Mistral AI
Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.Starting Price: Free -
23
Moshi
Kyutai
Moshi is an experimental conversational AI. Moshi thinks and speaks at the same time. Moshi can listen and talk at all time: maximum flow between you and Moshi.Starting Price: Free -
24
Olmo 2
Ai2
Olmo 2 is a family of fully open language models developed by the Allen Institute for AI (AI2), designed to provide researchers and developers with transparent access to training data, open-source code, reproducible training recipes, and comprehensive evaluations. These models are trained on up to 5 trillion tokens and are competitive with leading open-weight models like Llama 3.1 on English academic benchmarks. Olmo 2 emphasizes training stability, implementing techniques to prevent loss spikes during long training runs, and utilizes staged training interventions during late pretraining to address capability deficiencies. The models incorporate state-of-the-art post-training methodologies from AI2's Tülu 3, resulting in the creation of Olmo 2-Instruct models. An actionable evaluation framework, the Open Language Modeling Evaluation System (OLMES), was established to guide improvements through development stages, consisting of 20 evaluation benchmarks assessing core capabilities. -
25
Olmo 3
Ai2
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.Starting Price: Free -
26
Mistral Large
Mistral AI
Mistral Large is Mistral AI's flagship language model, designed for advanced text generation and complex multilingual reasoning tasks, including text comprehension, transformation, and code generation. It supports English, French, Spanish, German, and Italian, offering a nuanced understanding of grammar and cultural contexts. With a 32,000-token context window, it can accurately recall information from extensive documents. The model's precise instruction-following and native function-calling capabilities facilitate application development and tech stack modernization. Mistral Large is accessible through Mistral's platform, Azure AI Studio, and Azure Machine Learning, and can be self-deployed for sensitive use cases. Benchmark evaluations indicate that Mistral Large achieves strong results, making it the world's second-ranked model generally available through an API, next to GPT-4.Starting Price: Free -
27
Mistral Small
Mistral AI
On September 17, 2024, Mistral AI announced several key updates to enhance the accessibility and performance of their AI offerings. They introduced a free tier on "La Plateforme," their serverless platform for tuning and deploying Mistral models as API endpoints, enabling developers to experiment and prototype at no cost. Additionally, Mistral AI reduced prices across their entire model lineup, with significant cuts such as a 50% reduction for Mistral Nemo and an 80% decrease for Mistral Small and Codestral, making advanced AI more cost-effective for users. The company also unveiled Mistral Small v24.09, a 22-billion-parameter model offering a balance between performance and efficiency, suitable for tasks like translation, summarization, and sentiment analysis. Furthermore, they made Pixtral 12B, a vision-capable model with image understanding capabilities, freely available on "Le Chat," allowing users to analyze and caption images without compromising text-based performance.Starting Price: Free -
28
Solar Mini
Upstage AI
Solar Mini is a pre‑trained large language model that delivers GPT‑3.5‑comparable responses with 2.5× faster inference while staying under 30 billion parameters. It achieved first place on the Hugging Face Open LLM Leaderboard in December 2023 by combining a 32‑layer Llama 2 architecture, initialized with high‑quality Mistral 7B weights, with an innovative “depth up‑scaling” (DUS) approach that deepens the model efficiently without adding complex modules. After DUS, continued pretraining restores and enhances performance, and instruction tuning in a QA format, especially for Korean, refines its ability to follow user prompts, while alignment tuning ensures its outputs meet human or advanced AI preferences. Solar Mini outperforms competitors such as Llama 2, Mistral 7B, Ko‑Alpaca, and KULLM across a variety of benchmarks, proving that compact size need not sacrifice capability.Starting Price: $0.1 per 1M tokens -
29
Ministral 3
Mistral AI
Mistral 3 is the latest generation of open-weight AI models from Mistral AI, offering a full family of models, from small, edge-optimized versions to a flagship, large-scale multimodal model. The lineup includes three compact “Ministral 3” models (3B, 8B, and 14B parameters) designed for efficiency and deployment on constrained hardware (even laptops, drones, or edge devices), plus the powerful “Mistral Large 3,” a sparse mixture-of-experts model with 675 billion total parameters (41 billion active). The models support multimodal and multilingual tasks, not only text, but also image understanding, and have demonstrated best-in-class performance on general prompts, multilingual conversations, and multimodal inputs. The base and instruction-fine-tuned versions are released under the Apache 2.0 license, enabling broad customization and integration in enterprise and open source projects.Starting Price: Free -
30
Mistral Small 3.1
Mistral
Mistral Small 3.1 is a state-of-the-art, multimodal, and multilingual AI model released under the Apache 2.0 license. Building upon Mistral Small 3, this enhanced version offers improved text performance, and advanced multimodal understanding, and supports an expanded context window of up to 128,000 tokens. It outperforms comparable models like Gemma 3 and GPT-4o Mini, delivering inference speeds of 150 tokens per second. Designed for versatility, Mistral Small 3.1 excels in tasks such as instruction following, conversational assistance, image understanding, and function calling, making it suitable for both enterprise and consumer-grade AI applications. Its lightweight architecture allows it to run efficiently on a single RTX 4090 or a Mac with 32GB RAM, facilitating on-device deployments. It is available for download on Hugging Face, accessible via Mistral AI's developer playground, and integrated into platforms like Google Cloud Vertex AI, with availability on NVIDIA NIM andStarting Price: Free -
31
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
32
Mistral Saba
Mistral AI
Mistral Saba is a 24-billion-parameter model trained on meticulously curated datasets from across the Middle East and South Asia. The model provides more accurate and relevant responses than models that are over five times its size while being significantly faster and lower cost. It can also serve as a strong base to train highly specific regional adaptations. Mistral Saba is available as an API and can be deployed locally within customers' security premises. Like the recently released Mistral Small 3, the model is lightweight and can be deployed on single-GPU systems, responding at speeds of over 150 tokens per second. In keeping with the rich cultural cross-pollination between the Middle East and South Asia, Mistral Saba supports Arabic and many Indian-origin languages and is particularly strong in South Indian-origin languages such as Tamil. This capability enhances its versatility in multinational use across these interconnected regions.Starting Price: Free -
33
Mistral Large 3
Mistral AI
Mistral Large 3 is a next-generation, open multimodal AI model built with a powerful sparse Mixture-of-Experts architecture featuring 41B active parameters out of 675B total. Designed from scratch on NVIDIA H200 GPUs, it delivers frontier-level reasoning, multilingual performance, and advanced image understanding while remaining fully open-weight under the Apache 2.0 license. The model achieves top-tier results on modern instruction benchmarks, positioning it among the strongest permissively licensed foundation models available today. With native support across vLLM, TensorRT-LLM, and major cloud providers, Mistral Large 3 offers exceptional accessibility and performance efficiency. Its design enables enterprise-grade customization, letting teams fine-tune or adapt the model for domain-specific workflows and proprietary applications. Mistral Large 3 represents a major advancement in open AI, offering frontier intelligence without sacrificing transparency or control.Starting Price: Free -
34
Falcon-40B
Technology Innovation Institute (TII)
Falcon-40B is a 40B parameters causal decoder-only model built by TII and trained on 1,000B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-40B? It is the best open-source model currently available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions. ⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases. If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at Falcon-40B-Instruct.Starting Price: Free -
35
Ministral 3B
Mistral AI
Mistral AI introduced two state-of-the-art models for on-device computing and edge use cases, named "les Ministraux": Ministral 3B and Ministral 8B. These models set a new frontier in knowledge, commonsense reasoning, function-calling, and efficiency in the sub-10B category. They can be used or tuned for various applications, from orchestrating agentic workflows to creating specialist task workers. Both models support up to 128k context length (currently 32k on vLLM), and Ministral 8B features a special interleaved sliding-window attention pattern for faster and memory-efficient inference. These models were built to provide a compute-efficient and low-latency solution for scenarios such as on-device translation, internet-less smart assistants, local analytics, and autonomous robotics. Used in conjunction with larger language models like Mistral Large, les Ministraux also serve as efficient intermediaries for function-calling in multi-step agentic workflows.Starting Price: Free -
36
Ministral 8B
Mistral AI
Mistral AI has introduced two advanced models for on-device computing and edge applications, named "les Ministraux": Ministral 3B and Ministral 8B. These models excel in knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B parameter range. They support up to 128k context length and are designed for various applications, including on-device translation, offline smart assistants, local analytics, and autonomous robotics. Ministral 8B features an interleaved sliding-window attention pattern for faster and more memory-efficient inference. Both models can function as intermediaries in multi-step agentic workflows, handling tasks like input parsing, task routing, and API calls based on user intent with low latency and cost. Benchmark evaluations indicate that les Ministraux consistently outperforms comparable models across multiple tasks. As of October 16, 2024, both models are available, with Ministral 8B priced at $0.1 per million tokens.Starting Price: Free -
37
Llama 4 Behemoth
Meta
Llama 4 Behemoth is Meta's most powerful AI model to date, featuring a massive 288 billion active parameters. It excels in multimodal tasks, outperforming previous models like GPT-4.5 and Gemini 2.0 Pro across multiple STEM-focused benchmarks such as MATH-500 and GPQA Diamond. As the teacher model for the Llama 4 series, Behemoth sets the foundation for models like Llama 4 Maverick and Llama 4 Scout. While still in training, Llama 4 Behemoth demonstrates unmatched intelligence, pushing the boundaries of AI in fields like math, multilinguality, and image understanding.Starting Price: Free -
38
Mistral Medium 3
Mistral AI
Mistral Medium 3 is a powerful AI model designed to deliver state-of-the-art performance at a fraction of the cost compared to other models. It offers simpler deployment options, allowing for hybrid or on-premises configurations. Mistral Medium 3 excels in professional applications like coding and multimodal understanding, making it ideal for enterprise use. Its low-cost structure makes it highly accessible while maintaining top-tier performance, outperforming many larger models in specific domains.Starting Price: Free -
39
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
40
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model. -
41
Mistral Large 2
Mistral AI
Mistral AI has launched the Mistral Large 2, an advanced AI model designed to excel in code generation, multilingual capabilities, and complex reasoning tasks. The model features a 128k context window, supporting dozens of languages including English, French, Spanish, and Arabic, as well as over 80 programming languages. Mistral Large 2 is tailored for high-throughput single-node inference, making it ideal for large-context applications. Its improved performance on benchmarks like MMLU and its enhanced code generation and reasoning abilities ensure accuracy and efficiency. The model also incorporates better function calling and retrieval, supporting complex business applications.Starting Price: Free -
42
LFM2
Liquid AI
LFM2 is a next-generation series of on-device foundation models built to deliver the fastest generative-AI experience across a wide range of endpoints. It employs a new hybrid architecture that achieves up to 2x faster decode and prefill performance than comparable models, and up to 3x improvements in training efficiency compared to the previous generation. These models strike an optimal balance of quality, latency, and memory for deployment on embedded systems, allowing real-time, on-device AI across smartphones, laptops, vehicles, wearables, and other endpoints, enabling millisecond inference, device resilience, and full data sovereignty. Available in three dense checkpoints (0.35 B, 0.7 B, and 1.2 B parameters), LFM2 demonstrates benchmark performance that outperforms similarly sized models in tasks such as knowledge recall, mathematics, multilingual instruction-following, and conversational dialogue evaluations. -
43
LongLLaMA
LongLLaMA
This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.Starting Price: Free -
44
Devstral
Mistral AI
Devstral is an open source, agentic large language model (LLM) developed by Mistral AI in collaboration with All Hands AI, specifically designed for software engineering tasks. It excels at navigating complex codebases, editing multiple files, and resolving real-world issues, outperforming all open source models on the SWE-Bench Verified benchmark with a score of 46.8%. Devstral is fine-tuned from Mistral-Small-3.1 and features a long context window of up to 128,000 tokens. It is optimized for local deployment on high-end hardware, such as a Mac with 32GB RAM or an Nvidia RTX 4090 GPU, and is compatible with inference frameworks like vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is available for free and can be accessed via Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio.Starting Price: $0.1 per million input tokens -
45
Llama 4 Maverick
Meta
Llama 4 Maverick is one of the most advanced multimodal AI models from Meta, featuring 17 billion active parameters and 128 experts. It surpasses its competitors like GPT-4o and Gemini 2.0 Flash in a broad range of benchmarks, especially in tasks related to coding, reasoning, and multilingual capabilities. Llama 4 Maverick combines image and text understanding, enabling it to deliver industry-leading results in image-grounding tasks and precise, high-quality output. With its efficient performance at a reduced parameter size, Maverick offers exceptional value, especially in general assistant and chat applications.Starting Price: Free -
46
LLaVA
LLaVA
LLaVA (Large Language-and-Vision Assistant) is an innovative multimodal model that integrates a vision encoder with the Vicuna language model to facilitate comprehensive visual and language understanding. Through end-to-end training, LLaVA exhibits impressive chat capabilities, emulating the multimodal functionalities of models like GPT-4. Notably, LLaVA-1.5 has achieved state-of-the-art performance across 11 benchmarks, utilizing publicly available data and completing training in approximately one day on a single 8-A100 node, surpassing methods that rely on billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been instrumental in training LLaVA to perform a wide array of visual and language tasks effectively.Starting Price: Free -
47
Code Llama
Meta
Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.Starting Price: Free -
48
DeepScaleR
Agentica Project
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.Starting Price: Free -
49
Devstral Small 2
Mistral AI
Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.Starting Price: Free -
50
DBRX
Databricks
Today, we are excited to introduce DBRX, an open, general-purpose LLM created by Databricks. Across a range of standard benchmarks, DBRX sets a new state-of-the-art for established open LLMs. Moreover, it provides the open community and enterprises building their own LLMs with capabilities that were previously limited to closed model APIs; according to our measurements, it surpasses GPT-3.5, and it is competitive with Gemini 1.0 Pro. It is an especially capable code model, surpassing specialized models like CodeLLaMA-70B in programming, in addition to its strength as a general-purpose LLM. This state-of-the-art quality comes with marked improvements in training and inference performance. DBRX advances the state-of-the-art in efficiency among open models thanks to its fine-grained mixture-of-experts (MoE) architecture. Inference is up to 2x faster than LLaMA2-70B, and DBRX is about 40% of the size of Grok-1 in terms of both total and active parameter counts.