Olmo 3
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.
Learn more
GPT-4.1 mini
GPT-4.1 mini is a compact version of OpenAI’s powerful GPT-4.1 model, designed to provide high performance while significantly reducing latency and cost. With a smaller size and optimized architecture, GPT-4.1 mini still delivers impressive results in tasks such as coding, instruction following, and long-context processing. It supports up to 1 million tokens of context, making it an efficient solution for applications that require fast responses without sacrificing accuracy or depth.
Learn more
DeepSeek-V3.2-Speciale
DeepSeek-V3.2-Speciale is a high-compute variant of the DeepSeek-V3.2 model, created specifically for deep reasoning and advanced problem-solving tasks. It builds on DeepSeek Sparse Attention (DSA), a custom long-context attention mechanism that reduces computational overhead while preserving high performance. Through a large-scale reinforcement learning framework and extensive post-training compute, the Speciale variant surpasses GPT-5 on reasoning benchmarks and matches the capabilities of Gemini-3.0-Pro. The model achieved gold-medal performance in the International Mathematical Olympiad (IMO) 2025 and International Olympiad in Informatics (IOI) 2025. DeepSeek-V3.2-Speciale does not support tool-calling, making it purely optimized for uninterrupted reasoning and analytical accuracy. Released under the MIT license, it provides researchers and developers an open, state-of-the-art model focused entirely on high-precision reasoning.
Learn more
DeepSeek-V3.2
DeepSeek-V3.2 is a next-generation open large language model designed for efficient reasoning, complex problem solving, and advanced agentic behavior. It introduces DeepSeek Sparse Attention (DSA), a long-context attention mechanism that dramatically reduces computation while preserving performance. The model is trained with a scalable reinforcement learning framework, allowing it to achieve results competitive with GPT-5 and even surpass it in its Speciale variant. DeepSeek-V3.2 also includes a large-scale agent task synthesis pipeline that generates structured reasoning and tool-use demonstrations for post-training. The model features an updated chat template with new tool-calling logic and the optional developer role for agent workflows. With gold-medal performance in the IMO and IOI 2025 competitions, DeepSeek-V3.2 demonstrates elite reasoning capabilities for both research and applied AI scenarios.
Learn more