Alternatives to Megatron-Turing

Compare Megatron-Turing alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Megatron-Turing in 2024. Compare features, ratings, user reviews, pricing, and more from Megatron-Turing competitors and alternatives in order to make an informed decision for your business.

  • 1
    Cerebras-GPT
    State-of-the-art language models are extremely challenging to train; they require huge compute budgets, complex distributed compute techniques and deep ML expertise. As a result, few organizations train large language models (LLMs) from scratch. And increasingly those that have the resources and expertise are not open sourcing the results, marking a significant change from even a few months back. At Cerebras, we believe in fostering open access to the most advanced models. With this in mind, we are proud to announce the release to the open source community of Cerebras-GPT, a family of seven GPT models ranging from 111 million to 13 billion parameters. Trained using the Chinchilla formula, these models provide the highest accuracy for a given compute budget. Cerebras-GPT has faster training times, lower training costs, and consumes less energy than any publicly available model to date.
  • 2
    DeepSpeed

    DeepSpeed

    Microsoft

    DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
  • 3
    XLNet

    XLNet

    XLNet

    XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking.
  • 4
    Chinchilla

    Chinchilla

    Google DeepMind

    Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.
  • 5
    PanGu-Σ

    PanGu-Σ

    Huawei

    Significant advancements in the field of natural language processing, understanding, and generation have been achieved through the expansion of large language models. This study introduces a system which utilizes Ascend 910 AI processors and the MindSpore framework to train a language model with over a trillion parameters, specifically 1.085T, named PanGu-{\Sigma}. This model, which builds upon the foundation laid by PanGu-{\alpha}, takes the traditionally dense Transformer model and transforms it into a sparse one using a concept known as Random Routed Experts (RRE). The model was efficiently trained on a dataset of 329 billion tokens using a technique called Expert Computation and Storage Separation (ECSS), leading to a 6.3-fold increase in training throughput via heterogeneous computing. Experimentation indicates that PanGu-{\Sigma} sets a new standard in zero-shot learning for various downstream Chinese NLP tasks.
  • 6
    NVIDIA NeMo
    NVIDIA NeMo LLM is a service that provides a fast path to customizing and using large language models trained on several frameworks. Developers can deploy enterprise AI applications using NeMo LLM on private and public clouds. They can also experience Megatron 530B—one of the largest language models—through the cloud API or experiment via the LLM service. Customize your choice of various NVIDIA or community-developed models that work best for your AI applications. Within minutes to hours, get better responses by providing context for specific use cases using prompt learning techniques. Leverage the power of NVIDIA Megatron 530B, one of the largest language models, through the NeMo LLM Service or the cloud API. Take advantage of models for drug discovery, including in the cloud API and NVIDIA BioNeMo framework.
  • 7
    Cohere

    Cohere

    Cohere AI

    Build natural language understanding and generation into your product with a few lines of code. The Cohere API provides access to models that read billions of web pages and learn to understand the meaning, sentiment, and intent of the words we use. Use the Cohere API to write human-like text by completing a prompt or filling in blanks. You can write copy, generate code, summarize text, and more. Compute the likelihood of text and retrieve representations from the model. Use the likelihood API to filter text based on chosen categories or selected criteria. With representations, you can train your own downstream models on a wide variety of domain-specific natural language tasks. The Cohere API can compute the similarity between pieces of text, and make categorical predictions by comparing the likelihood of different text options. The model has multiple lenses through which to view ideas, so that it can recognize abstract similarities between concepts as distinct as DNA and computers.
    Starting Price: $0.40 / 1M Tokens
  • 8
    GPT-NeoX

    GPT-NeoX

    EleutherAI

    An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library. This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training.
  • 9
    Gemini Ultra
    Gemini Ultra is a powerful new language model from Google DeepMind. It is the largest and most capable model in the Gemini family, which also includes Gemini Pro and Gemini Nano. Gemini Ultra is designed for highly complex tasks, such as natural language processing, machine translation, and code generation. It is also the first language model to outperform human experts on the Massive Multitask Language Understanding (MMLU) test, obtaining a score of 90%.
  • 10
    OPT

    OPT

    Meta

    Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.
  • 11
    PanGu-α

    PanGu-α

    Huawei

    PanGu-α is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-α, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-α in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-α in performing various tasks under few-shot or zero-shot settings.
  • 12
    Codestral Mamba
    As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models.
  • 13
    InstructGPT
    InstructGPT is an open-source framework for training language models to generate natural language instructions from visual input. It uses a generative pre-trained transformer (GPT) model and the state-of-the-art object detector, Mask R-CNN, to detect objects in images and generate natural language sentences that describe the image. InstructGPT is designed to be effective across domains such as robotics, gaming and education; it can assist robots in navigating complex tasks with natural language instructions, or help students learn by providing descriptive explanations of processes or events.
    Starting Price: $0.0200 per 1000 tokens
  • 14
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
  • 15
    NLP Cloud

    NLP Cloud

    NLP Cloud

    Fast and accurate AI models suited for production. Highly-available inference API leveraging the most advanced NVIDIA GPUs. We selected the best open-source natural language processing (NLP) models from the community and deployed them for you. Fine-tune your own models - including GPT-J - or upload your in-house custom models, and deploy them easily to production. Upload or Train/Fine-Tune your own AI models - including GPT-J - from your dashboard, and use them straight away in production without worrying about deployment considerations like RAM usage, high-availability, scalability... You can upload and deploy as many models as you want to production.
    Starting Price: $29 per month
  • 16
    Codestral

    Codestral

    Mistral AI

    We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.
  • 17
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.
  • 18
    CodeGemma
    CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following. CodeGemma has 3 model variants, a 7B pre-trained variant that specializes in code completion and generation from code prefixes and/or suffixes, a 7B instruction-tuned variant for natural language-to-code chat and instruction following; and a state-of-the-art 2B pre-trained variant that provides up to 2x faster code completion. Complete lines, and functions, and even generate entire blocks of code, whether you're working locally or using Google Cloud resources. Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, reducing errors and debugging time.
  • 19
    GPT-4

    GPT-4

    OpenAI

    GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.
    Starting Price: $0.0200 per 1000 tokens
  • 20
    PaLM 2

    PaLM 2

    Google

    PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API.
  • 21
    NVIDIA NeMo Megatron
    NVIDIA NeMo Megatron is an end-to-end framework for training and deploying LLMs with billions and trillions of parameters. NVIDIA NeMo Megatron, part of the NVIDIA AI platform, offers an easy, efficient, and cost-effective containerized framework to build and deploy LLMs. Designed for enterprise application development, it builds upon the most advanced technologies from NVIDIA research and provides an end-to-end workflow for automated distributed data processing, training large-scale customized GPT-3, T5, and multilingual T5 (mT5) models, and deploying models for inference at scale. Harnessing the power of LLMs is made easy through validated and converged recipes with predefined configurations for training and inference. Customizing models is simplified by the hyperparameter tool, which automatically searches for the best hyperparameter configurations and performance for training and inference on any given distributed GPU cluster configuration.
  • 22
    Jurassic-2
    Announcing the launch of Jurassic-2, the latest generation of AI21 Studio’s foundation models, a game-changer in the field of AI, with top-tier quality and new capabilities. And that's not all, we're also releasing our task-specific APIs, with plug-and-play reading and writing capabilities that outperform competitors. Our focus at AI21 Studio is to help developers and businesses leverage reading and writing AI to build real-world products with tangible value. Today marks two important milestones with the release of Jurassic-2 and Task-Specific APIs, empowering you to bring generative AI to production. Jurassic-2 (or J2, as we like to call it) is the next generation of our foundation models with significant improvements in quality and new capabilities including zero-shot instruction-following, reduced latency, and multi-language support. Task-specific APIs provide developers with industry-leading APIs that perform specialized reading and writing tasks out-of-the-box.
    Starting Price: $29 per month
  • 23
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens
  • 24
    CodeQwen

    CodeQwen

    QwenLM

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
  • 25
    LUIS

    LUIS

    Microsoft

    Language Understanding (LUIS): A machine learning-based service to build natural language into apps, bots, and IoT devices. Quickly create enterprise-ready, custom models that continuously improve. Add natural language to your apps. Designed to identify valuable information in conversations, LUIS interprets user goals (intents) and distills valuable information from sentences (entities), for a high quality, nuanced language model. LUIS integrates seamlessly with the Azure Bot Service, making it easy to create a sophisticated bot. Powerful developer tools are combined with customizable pre-built apps and entity dictionaries, such as Calendar, Music, and Devices, so you can build and deploy a solution more quickly. Dictionaries are mined from the collective knowledge of the web and supply billions of entries, helping your model to correctly identify valuable information from user conversations. Active learning is used to continuously improve the quality of the models.
  • 26
    BERT

    BERT

    Google

    BERT is a large language model and a method of pre-training language representations. Pre-training refers to how BERT is first trained on a large source of text, such as Wikipedia. You can then apply the training results to other Natural Language Processing (NLP) tasks, such as question answering and sentiment analysis. With BERT and AI Platform Training, you can train a variety of NLP models in about 30 minutes.
  • 27
    GPT-4o

    GPT-4o

    OpenAI

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
    Starting Price: $5.00 / 1M tokens
  • 28
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
  • 29
    ERNIE 3.0 Titan
    Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, We design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts.
  • 30
    Aya

    Aya

    Cohere AI

    Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date.
  • 31
    VideoPoet
    VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency.
  • 32
    ALBERT

    ALBERT

    Google

    ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining.
  • 33
    AI21 Studio

    AI21 Studio

    AI21 Studio

    AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.
    Starting Price: $29 per month
  • 34
    GPT-3.5

    GPT-3.5

    OpenAI

    GPT-3.5 is the next evolution of GPT 3 large language model from OpenAI. GPT-3.5 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. The main GPT-3.5 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 35
    Qwen

    Qwen

    Alibaba

    Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
  • 36
    Baichuan-13B

    Baichuan-13B

    Baichuan Intelligent Technology

    Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.
  • 37
    Samsung Gauss
    Samsung Gauss is a new AI model developed by Samsung Electronics. It is a large language model (LLM) that has been trained on a massive dataset of text and code. Samsung Gauss is able to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Samsung Gauss is still under development, but it has already learned to perform many kinds of tasks, including: Following instructions and completing requests thoughtfully. Answering your questions in a comprehensive and informative way, even if they are open ended, challenging, or strange. Generating different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc. Here are some examples of what Samsung Gauss can do: Translation: Samsung Gauss can translate text between many different languages, including English, French, German, Spanish, Chinese, Japanese, and Korean. Coding: Samsung Gauss can generate code.
  • 38
    GPT-J

    GPT-J

    EleutherAI

    GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.
  • 39
    GPT-3

    GPT-3

    OpenAI

    Our GPT-3 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. Davinci is the most capable model, and Ada is the fastest. The main GPT-3 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 40
    Claude 3 Opus

    Claude 3 Opus

    Anthropic

    Opus, our most intelligent model, outperforms its peers on most of the common evaluation benchmarks for AI systems, including undergraduate level expert knowledge (MMLU), graduate level expert reasoning (GPQA), basic mathematics (GSM8K), and more. It exhibits near-human levels of comprehension and fluency on complex tasks, leading the frontier of general intelligence. All Claude 3 models show increased capabilities in analysis and forecasting, nuanced content creation, code generation, and conversing in non-English languages like Spanish, Japanese, and French.
  • 41
    RoBERTa
    RoBERTa builds on BERT’s language masking strategy, wherein the system learns to predict intentionally hidden sections of text within otherwise unannotated language examples. RoBERTa, which was implemented in PyTorch, modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. This allows RoBERTa to improve on the masked language modeling objective compared with BERT and leads to better downstream task performance. We also explore training RoBERTa on an order of magnitude more data than BERT, for a longer amount of time. We used existing unannotated NLP datasets as well as CC-News, a novel set drawn from public news articles.
  • 42
    Ntropy

    Ntropy

    Ntropy

    Ship faster integrating with our Python SDK or Rest API in minutes. No prior setups or data formatting. You can get going straight away as soon as you have incoming data and your first customers. We have built and fine-tuned custom language models to recognize entities, automatically crawl the web in real-time and pick the best match, as well as assign labels with superhuman accuracy in a fraction of the time. Everybody has a data enrichment model that is trying to be good at one thing, US or Europe, business or consumer. These models are poor at generalizing and are not capable of human-level output. With us, you can leverage the power of the world's largest and most performant models embedded in your products, at a fraction of cost and time.
  • 43
    LongLLaMA

    LongLLaMA

    LongLLaMA

    This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.
  • 44
    Medical LLM

    Medical LLM

    John Snow Labs

    John Snow Labs' Medical LLM is an advanced, domain-specific large language model (LLM) designed to revolutionize the way healthcare organizations harness the power of artificial intelligence. This innovative platform is tailored specifically for the healthcare industry, combining cutting-edge natural language processing (NLP) capabilities with a deep understanding of medical terminology, clinical workflows, and regulatory requirements. The result is a powerful tool that enables healthcare providers, researchers, and administrators to unlock new insights, improve patient outcomes, and drive operational efficiency. At the heart of the Healthcare LLM is its comprehensive training on vast amounts of healthcare data, including clinical notes, research papers, and regulatory documents. This specialized training allows the model to accurately interpret and generate medical text, making it an invaluable asset for tasks such as clinical documentation, automated coding, and medical research.
  • 45
    GPT-5

    GPT-5

    OpenAI

    GPT-5 is the anticipated next iteration of OpenAI's Generative Pre-trained Transformer, a large language model (LLM) still under development. LLMs are trained on massive amounts of text data and are able to generate realistic and coherent text, translate languages, write different kinds of creative content, and answer your questions in an informative way. It's not publicly available yet. OpenAI hasn't announced a release date, but some speculate it could be launched sometime in 2024. It's expected to be even more powerful than its predecessor, GPT-4. GPT-4 is already impressive, capable of generating human-quality text, translating languages, and writing different kinds of creative content. GPT-5 is expected to take these abilities even further, with better reasoning, factual accuracy, and ability to follow instructions.
    Starting Price: $0.0200 per 1000 tokens
  • 46
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 47
    FreeWilly

    FreeWilly

    Stability AI

    Stability AI and its CarperAI lab are proud to announce FreeWilly1 and its successor FreeWilly2, two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. FreeWilly1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, FreeWilly2 leverages the LLaMA 2 70B foundation model to reach a performance that compares favorably with GPT-3.5 for some tasks. The training for the FreeWilly models was directly inspired by the methodology pioneered by Microsoft in its paper: "Orca: Progressive Learning from Complex Explanation Traces of GPT-4.” While our data generation process is similar, we differ in our data sources.
  • 48
    GPT-4o mini
    A small model with superior textual intelligence and multimodal reasoning. GPT-4o mini enables a broad range of tasks with its low cost and latency, such as applications that chain or parallelize multiple model calls (e.g., calling multiple APIs), pass a large volume of context to the model (e.g., full code base or conversation history), or interact with customers through fast, real-time text responses (e.g., customer support chatbots). Today, GPT-4o mini supports text and vision in the API, with support for text, image, video and audio inputs and outputs coming in the future. The model has a context window of 128K tokens, supports up to 16K output tokens per request, and has knowledge up to October 2023. Thanks to the improved tokenizer shared with GPT-4o, handling non-English text is now even more cost effective.
  • 49
    Gemini

    Gemini

    Google

    Gemini was created from the ground up to be multimodal, highly efficient at tool and API integrations and built to enable future innovations, like memory and planning. While still early, we’re already seeing impressive multimodal capabilities not seen in prior models. Gemini is also our most flexible model yet — able to efficiently run on everything from data centers to mobile devices. Its state-of-the-art capabilities will significantly enhance the way developers and enterprise customers build and scale with AI. We’ve optimized Gemini 1.0, our first version, for three different sizes: Gemini Ultra — our largest and most capable model for highly complex tasks. Gemini Pro — our best model for scaling across a wide range of tasks. Gemini Nano — our most efficient model for on-device tasks.
  • 50
    Inflection AI

    Inflection AI

    Inflection AI

    Inflection AI is a cutting-edge artificial intelligence research and development company focused on creating advanced AI systems designed to interact with humans in more natural, intuitive ways. Founded in 2022 by entrepreneurs such as Mustafa Suleyman, one of the co-founders of DeepMind, and Reid Hoffman, co-founder of LinkedIn, the company's mission is to make powerful AI more accessible and aligned with human values. Inflection AI specializes in building large-scale language models that enhance human-AI communication, aiming to transform industries ranging from customer service to personal productivity through intelligent, responsive, and ethically designed AI systems. The company's focus on safety, transparency, and user control ensures that their innovations contribute positively to society while addressing potential risks associated with AI technology.