AgentHub
AgentHub is a staging environment to simulate, trace, and evaluate AI agents in a private, sandboxed space that lets you ship with confidence, speed, and precision. With easy setup, you can onboard agents in minutes; a robust evaluation infrastructure provides multi-step trace logging, LLM graders, and fully customizable evaluations. Realistic user simulation employs configurable personas to model diverse behaviors and stress scenarios, and dataset enhancement synthetically expands test sets for comprehensive coverage. Prompt experimentation enables dynamic multi-prompt testing at scale, while side-by-side trace analysis lets you compare decisions, tool invocations, and outcomes across runs. A built-in AI Copilot analyzes traces, interprets results, and answers questions grounded in your own code and data, turning agent runs into clear, actionable insights. Combined human-in-the-loop and automated feedback options, along with white-glove onboarding and best-practice guidance.
Learn more
Latitude
Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.
Learn more
Weavel
Meet Ape, the first AI prompt engineer. Equipped with tracing, dataset curation, batch testing, and evals. Ape achieves an impressive 93% on the GSM8K benchmark, surpassing both DSPy (86%) and base LLMs (70%). Continuously optimize prompts using real-world data. Prevent performance regression with CI/CD integration. Human-in-the-loop with scoring and feedback. Ape works with the Weavel SDK to automatically log and add LLM generations to your dataset as you use your application. This enables seamless integration and continuous improvement specific to your use case. Ape auto-generates evaluation code and uses LLMs as impartial judges for complex tasks, streamlining your assessment process and ensuring accurate, nuanced performance metrics. Ape is reliable, as it works with your guidance and feedback. Feed in scores and tips to help Ape improve. Equipped with logging, testing, and evaluation for LLM applications.
Learn more
DeepEval
DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
Learn more