Alternatives to ML.NET
Compare ML.NET alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to ML.NET in 2025. Compare features, ratings, user reviews, pricing, and more from ML.NET competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
RunPod
RunPod
RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure. -
3
Google Cloud Vision AI
Google
Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog. -
4
Get insightful text analysis with machine learning that extracts, analyzes, and stores text. Train high-quality machine learning custom models without a single line of code with AutoML. Apply natural language understanding (NLU) to apps with Natural Language API. Use entity analysis to find and label fields within a document, including emails, chat, and social media, and then sentiment analysis to understand customer opinions to find actionable product and UX insights. Natural Language with speech-to-text API extracts insights from audio. Vision API adds optical character recognition (OCR) for scanned docs. Translation API understands sentiments in multiple languages. Use custom entity extraction to identify domain-specific entities within documents, many of which don’t appear in standard language models, without having to spend time or money on manual analysis. Train your own high-quality machine learning custom models to classify, extract, and detect sentiment.
-
5
TensorFlow
TensorFlow
An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.Starting Price: Free -
6
Alibaba Cloud Machine Learning Platform for AI
Alibaba Cloud
An end-to-end platform that provides various machine learning algorithms to meet your data mining and analysis requirements. Machine Learning Platform for AI provides end-to-end machine learning services, including data processing, feature engineering, model training, model prediction, and model evaluation. Machine learning platform for AI combines all of these services to make AI more accessible than ever. Machine Learning Platform for AI provides a visualized web interface allowing you to create experiments by dragging and dropping different components to the canvas. Machine learning modeling is a simple, step-by-step procedure, improving efficiencies and reducing costs when creating an experiment. Machine Learning Platform for AI provides more than one hundred algorithm components, covering such scenarios as regression, classification, clustering, text analysis, finance, and time series.Starting Price: $1.872 per hour -
7
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
8
Azure Machine Learning
Microsoft
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R. -
9
Apache Mahout
Apache Software Foundation
Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark. -
10
Oracle Machine Learning
Oracle
Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface. -
11
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
-
12
Kraken
Big Squid
Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.Starting Price: $100 per month -
13
NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.Starting Price: Free
-
14
Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
-
15
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data. -
16
Tencent Cloud TI Platform
Tencent
Tencent Cloud TI Platform is a one-stop machine learning service platform designed for AI engineers. It empowers AI development throughout the entire process from data preprocessing to model building, model training, model evaluation, and model service. Preconfigured with diverse algorithm components, it supports multiple algorithm frameworks to adapt to different AI use cases. Tencent Cloud TI Platform delivers a one-stop machine learning experience that covers a complete and closed-loop workflow from data preprocessing to model building, model training, and model evaluation. With Tencent Cloud TI Platform, even AI beginners can have their models constructed automatically, making it much easier to complete the entire training process. Tencent Cloud TI Platform's auto-tuning tool can also further enhance the efficiency of parameter tuning. Tencent Cloud TI Platform allows CPU/GPU resources to elastically respond to different computing power needs with flexible billing modes. -
17
Horovod
Horovod
Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.Starting Price: Free -
18
Huawei Cloud ModelArts
Huawei Cloud
ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration. -
19
ONNX
ONNX
ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute. -
20
neptune.ai
neptune.ai
Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.Starting Price: $49 per month -
21
Perception Platform
Intuition Machines
The Perception Platform by Intuition Machines automates the entire lifecycle of machine learning models—from training to deployment and continuous improvement. Featuring advanced active learning, the platform enables models to evolve by learning from new data and human interaction, enhancing accuracy while reducing manual oversight. Robust APIs facilitate seamless integration with existing systems, making it scalable and easy to adopt across diverse AI/ML applications. -
22
CentML
CentML
CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you. -
23
Accord.NET Framework
Accord.NET Framework
The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive documentation and wiki helps fill in the details. -
24
PI.EXCHANGE
PI.EXCHANGE
Easily connect your data to the engine, either through uploading a file or connecting to a database. Then, start analyzing your data through visualizations, or prepare your data for machine learning modeling with the data wrangling actions with repeatable recipes. Get the most out of your data by building machine learning models, using regression, classification or clustering algorithms - all without any code. Uncover insights into your data, using the feature importance, prediction explanation, and what-if tools. Make predictions and integrate them seamlessly into your existing systems through our connectors, ready to go so you can start taking action.Starting Price: $39 per month -
25
Keepsake
Replicate
Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.Starting Price: Free -
26
Flyte
Union.ai
The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.Starting Price: Free -
27
Datatron
Datatron
Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance. -
28
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis. -
29
IntelliHub
Spotflock
We work closely with businesses to find out what are the common issues preventing companies from realising benefits. We design to open up opportunities that were previously not viable using conventional approaches Corporations -big and small, require an AI platform with complete empowerment and ownership. Tackle data privacy and adopt to AI platforms at a sustainable cost. Enhance the efficiency of businesses and augment the work humans do. We apply AI to gain control over repetitive or dangerous tasks and bypass human intervention, thereby expediting tasks with creativity and empathy. Machine Learning helps to give predictive capabilities to applications with ease. You can build classification and regression models. It can also do clustering and visualize different clusters. It supports multiple ML libraries like Weka, Scikit-Learn, H2O and Tensorflow. It includes around 22 different algorithms for building classification, regression and clustering models. -
30
V7 Darwin
V7
V7 Darwin is a powerful AI-driven platform for labeling and training data that streamlines the process of annotating images, videos, and other data types. By using AI-assisted tools, V7 Darwin enables faster, more accurate labeling for a variety of use cases such as machine learning model training, object detection, and medical imaging. The platform supports multiple types of annotations, including keypoints, bounding boxes, and segmentation masks. It integrates with various workflows through APIs, SDKs, and custom integrations, making it an ideal solution for businesses seeking high-quality data for their AI projects.Starting Price: $150 -
31
BigML
BigML
Machine Learning made beautifully simple for everyone. Take your business to the next level with the leading Machine Learning platform. Start making data-driven decisions today! No more wildly expensive or cumbersome solutions. Machine Learning that simply works. BigML provides a selection of robustly-engineered Machine Learning algorithms proven to solve real world problems by applying a single, standardized framework across your company. Avoid dependencies on many disparate libraries that increase complexity, maintenance costs, and technical debt in your projects. BigML facilitates unlimited predictive applications across industries including aerospace, automotive, energy, entertainment, financial services, food, healthcare, IoT, pharmaceutical, transportation, telecommunications, and more. Supervised Learning: classification and regression (trees, ensembles, linear regressions, logistic regressions, deepnets), and time series forecasting.Starting Price: $30 per user per month -
32
Caffe
BAIR
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU. -
33
Create ML
Apple
Experience an entirely new way of training machine learning models on your Mac. Create ML takes the complexity out of model training while producing powerful Core ML models. Train multiple models using different datasets, all in a single project. Preview your model performance using Continuity with your iPhone camera and microphone on your Mac, or drop in sample data. Pause, save, resume, and extend your training process. Interactively learn how your model performs on test data from your evaluation set. Explore key metrics and their connections to specific examples to help identify challenging use cases, further investments in data collection, and opportunities to help improve model quality. Use an external graphics processing unit with your Mac for even better model training performance. Train models blazingly fast right on your Mac while taking advantage of CPU and GPU. Create ML has a variety of model types to choose from. -
34
MLlib
Apache Software Foundation
Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. -
35
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow. -
36
MLBox
Axel ARONIO DE ROMBLAY
MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset. -
37
Google Cloud AutoML
Google
Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. It relies on Google’s state-of-the-art transfer learning and neural architecture search technology. Cloud AutoML leverages more than 10 years of proprietary Google Research technology to help your machine learning models achieve faster performance and more accurate predictions. Use Cloud AutoML’s simple graphical user interface to train, evaluate, improve, and deploy models based on your data. You’re only a few minutes away from your own custom machine learning model. Google’s human labeling service can put a team of people to work annotating or cleaning your labels to make sure your models are being trained on high-quality data. -
38
Oracle Data Science
Oracle
A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results. -
39
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
40
Kubeflow
Kubeflow
The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. Kubeflow provides a custom TensorFlow training job operator that you can use to train your ML model. In particular, Kubeflow's job operator can handle distributed TensorFlow training jobs. Configure the training controller to use CPUs or GPUs and to suit various cluster sizes. Kubeflow includes services to create and manage interactive Jupyter notebooks. You can customize your notebook deployment and your compute resources to suit your data science needs. Experiment with your workflows locally, then deploy them to a cloud when you're ready. -
41
Nebius
Nebius
Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.Starting Price: $2.66/hour -
42
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources. -
43
TensorBoard
Tensorflow
TensorBoard is TensorFlow's comprehensive visualization toolkit designed to facilitate machine learning experimentation. It enables users to track and visualize metrics such as loss and accuracy, visualize the model graph (operations and layers), view histograms of weights, biases, or other tensors as they change over time, project embeddings to a lower-dimensional space, and display images, text, and audio data. Additionally, TensorBoard offers profiling capabilities to optimize TensorFlow programs. These features collectively provide a suite of tools to understand, debug, and optimize TensorFlow programs, enhancing the machine learning workflow. In machine learning, to improve something you often need to be able to measure it. TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics, visualizing the model graph, and projecting embeddings to a lower dimensional space.Starting Price: Free -
44
Flower
Flower
Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.Starting Price: Free -
45
Amazon EC2 Inf1 Instances
Amazon
Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.Starting Price: $0.228 per hour -
46
Weka
University of Waikato
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization. Found only on the islands of New Zealand, the Weka is a flightless bird with an inquisitive nature. The name is pronounced like this, and the bird sounds like this. Weka is open source software issued under the GNU General Public License. We have put together several free online courses that teach machine learning and data mining using Weka. The videos for the courses are available on Youtube. An exciting and potentially far-reaching development in computer science is the invention and application of methods of machine learning (ML). These enable a computer program to automatically analyze a large body of data and decide what information is most relevant. This crystallized information can then be used to automatically make predictions or to help people make decisions faster. -
47
Paradise
Geophysical Insights
Paradise uses robust, unsupervised machine learning and supervised deep learning technologies to accelerate interpretation and generate greater insights from the data. Generate attributes to extract meaningful geological information and as input into machine learning analysis. Identify attributes having the highest variance and contribution among a set of attributes in a geologic setting, Display the neural classes (topology) and their associated colors resulting from Stratigraphic Analysis that indicate the distribution of facies. Detect faults automatically with deep learning and machine learning processes. Compare machine learning classification results and other seismic attributes to traditional good logs. Generate geometric and spectral decomposition attributes on a cluster of compute nodes in a fraction of the time on a single machine. -
48
SiMa
SiMa
SiMa offers a software-centric, embedded edge machine learning system-on-chip (MLSoC) platform that delivers high-performance, low-power AI solutions for various applications. The MLSoC integrates multiple modalities, including text, image, audio, video, and haptic inputs, performing complex ML inference and presenting outputs in any modality. It supports a wide range of frameworks (e.g., TensorFlow, PyTorch, ONNX) and can compile over 250 models, providing customers with an effortless experience and world-class performance-per-watt results. Complementing the hardware, SiMa.ai is designed for complete ML stack application development. It supports any ML workflow customers plan to deploy on the edge without compromising performance and ease of use. Palette's integrated ML compiler accepts any model from any neural network framework. -
49
Elham.ai
Elham.ai
Elham.ai is an automated machine-learning platform that lets users build and deploy AI models with zero coding required. It offers a no-code interface where you can upload your datasets, select problem types (e.g., classification, regression, etc.), and let Elham handle data preprocessing, feature engineering, model training, evaluation, and deployment. It integrates with ChatGPT/OpenAI via Zapier, which allows transforming, summarizing, or analyzing integration data using leading AI models. It also has sign-up/login workflows, suggesting teams can start using it directly. It aims to convert raw data into actionable insights and streamline the end-to-end ML pipeline while hiding the complexities of model tuning and infrastructure setup.Starting Price: $559.75 per month -
50
Hive AutoML
Hive
Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more.