Alternatives to Luminal

Compare Luminal alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Luminal in 2025. Compare features, ratings, user reviews, pricing, and more from Luminal competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Luminal View Software
    Visit Website
  • 2
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 3
    Deci

    Deci

    Deci AI

    Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.
  • 4
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
    Starting Price: Free
  • 5
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 6
    Zebra by Mipsology
    Zebra by Mipsology is the ideal Deep Learning compute engine for neural network inference. Zebra seamlessly replaces or complements CPUs/GPUs, allowing any neural network to compute faster, with lower power consumption, at a lower cost. Zebra deploys swiftly, seamlessly, and painlessly without knowledge of underlying hardware technology, use of specific compilation tools, or changes to the neural network, the training, the framework, and the application. Zebra computes neural networks at world-class speed, setting a new standard for performance. Zebra runs on highest-throughput boards all the way to the smallest boards. The scaling provides the required throughput, in data centers, at the edge, or in the cloud. Zebra accelerates any neural network, including user-defined neural networks. Zebra processes the same CPU/GPU-based trained neural network with the same accuracy without any change.
  • 7
    TFLearn

    TFLearn

    TFLearn

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
  • 8
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 9
    eLuminate

    eLuminate

    eGenerationMarketing

    eLuminate is an easy-to-use legal lead and case management software. Entirely web-based and highly customizable, attorneys and advocates can use eLuminate to manage their leads, cases, documents and firm’s day-to-day activities. Whether it’s when your client first applied for benefits or which stage of the appeal process your client is in, You can edit eLuminate to best suit your firm’s needs. From the age of your Social Security disability leads to the type of vehicle involved in a personal injury claim, eLuminate is not one size fits all: it helps you put your firms’ priorities first. eLuminate, is available online, so you don’t need to download any software or have a tech team come in to install the product onto your office’s computers. Any device that has internet connectivity can access eLuminate. Whenever you email a lead or a client, whether or not it’s sent directly through the software, eLuminate will generate a time-stamped note to record exactly what correspondence occurred.
  • 10
    Tenstorrent DevCloud
    We developed Tenstorrent DevCloud to give people the opportunity to try their models on our servers without purchasing our hardware. We are building Tenstorrent AI in the cloud so programmers can try our AI solutions. The first log-in is free, after that, you get connected with our team who can help better assess your needs. Tenstorrent is a team of competent and motivated people that came together to build the best computing platform for AI and software 2.0. Tenstorrent is a next-generation computing company with the mission of addressing the rapidly growing computing demands for software 2.0. Headquartered in Toronto, Canada, Tenstorrent brings together experts in the field of computer architecture, basic design, advanced systems, and neural network compilers. ur processors are optimized for neural network inference and training. They can also execute other types of parallel computation. Tenstorrent processors comprise a grid of cores known as Tensix cores.
  • 11
    NVIDIA DIGITS

    NVIDIA DIGITS

    NVIDIA DIGITS

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
  • 12
    Luminance

    Luminance

    Luminance

    Luminance applies supervised and unsupervised machine learning to the process of document review. Deployed via the cloud, Luminance works out-of-the-box, reading and forming an understanding of documents. Luminance presents its AI-powered analysis back to lawyers across a series of interactive widgets, highlighting key datapoints and anomalies. Luminance Diligence is a technology for corporate lawyers which assists with a range of over 25 types of contractual reviews, including M&A due diligence, real estate, regulatory compliance and redaction. By adopting a powerful machine learning approach, using Luminance Diligence, lawyers are able to perform fast and rigorous contract reviews, with more insight than ever before. Luminance Discovery is an end-to-end eDiscovery platform, using AI to transform the way lawyers go about investigations, litigation and arbitration. From intelligent ingestion and data culling tools to AI-powered ECA and smart, court-compliant production functionality.
  • 13
    SiMa

    SiMa

    SiMa

    SiMa offers a software-centric, embedded edge machine learning system-on-chip (MLSoC) platform that delivers high-performance, low-power AI solutions for various applications. The MLSoC integrates multiple modalities, including text, image, audio, video, and haptic inputs, performing complex ML inference and presenting outputs in any modality. It supports a wide range of frameworks (e.g., TensorFlow, PyTorch, ONNX) and can compile over 250 models, providing customers with an effortless experience and world-class performance-per-watt results. Complementing the hardware, SiMa.ai is designed for complete ML stack application development. It supports any ML workflow customers plan to deploy on the edge without compromising performance and ease of use. Palette's integrated ML compiler accepts any model from any neural network framework.
  • 14
    Luminal

    Luminal

    Luminal

    Luminal gives you the power of Python for spreadsheet processing with none of the complexity. Clean, transform or analyze large amounts of data using nothing but natural language. If it's supported by Python, it's supported by Luminal. Perform powerful cleaning operations, answer sophisticated questions and create beautiful visualizations. Don't waste your time manually processing data in Excel or writing a Python script to do the work. Let Luminal take care of it and save hours. At Luminal, we prioritize the protection of our customers' data and strictly comply with security regulations. Ensuring the security of customer information is core to our company culture.
    Starting Price: $16 per user per month
  • 15
    Lumin Digital

    Lumin Digital

    Lumin Digital

    Lumin Digital is the leading, future-ready digital banking solution powering remarkable growth for financial institutions across the United States. Combining innovation, data, and speed, Lumin’s disruption-proof platform was born in the cloud to stay ahead of the evolving expectations of retail and business banking users. With Lumin Digital’s unique approach, our clients innovate and scale at their own pace, optimize digital banking ROI, and create a strong digital relationship with their customers. We don’t settle for the status quo. We think, innovate, and move the standard for excellence forward. With every innovation, we reset the expectations of the industry. With a client-centric approach, proven methodology, and a track record of 100% on-time launches, we ensure a seamless transition that positions you for long-term success. We drive the power of innovation forward with weekly updates and zero disruption.
    Starting Price: Free
  • 16
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • 17
    Lumin PDF

    Lumin PDF

    Lumin PDF

    We are the bridge between paper and the cloud, our seamless PDF workflows help you achieve greater impact with less administration. Edit PDFs within Google Workspace. Open Lumin directly from Gmail, Google Drive, or Google Classroom. Uploading old documents to the cloud has never been easier. Get your team on the same page with real-time feedback and manual tools. Submit work, negotiate terms, and sign everything with Lumin Sign. Enjoy our comprehensive free plan for K-12 teachers and students. Our products are implemented using a rigorous and constantly updated security system. We also have a Google-verified storage system that ensures your files never have to leave Google Drive. Collaborate with your current colleagues and attract new ones with Lumin and Lumin Sign. Our innovative solutions are great on their own, but together they're even better. Lumin reduces the comings and goings of your team. With a cloud workspace integrated with Google, you can collaborate in real-time.
    Starting Price: $9 per month
  • 18
    DeePhi Quantization Tool

    DeePhi Quantization Tool

    DeePhi Quantization Tool

    This is a model quantization tool for convolution neural networks(CNN). This tool could quantize both weights/biases and activations from 32-bit floating-point (FP32) format to 8-bit integer(INT8) format or any other bit depths. With this tool, you can boost the inference performance and efficiency significantly, while maintaining the accuracy. This tool supports common layer types in neural networks, including convolution, pooling, fully-connected, batch normalization and so on. The quantization tool does not need the retraining of the network or labeled datasets, only one batch of pictures are needed. The process time ranges from a few seconds to several minutes depending on the size of neural network, which makes rapid model update possible. This tool is collaborative optimized for DeePhi DPU and could generate INT8 format model files required by DNNC.
    Starting Price: $0.90 per hour
  • 19
    Lumin Sign
    Lumin Sign is an e-signature solution that streamlines the signing process by offering fast, secure, and legally-binding digital signatures. The platform allows businesses to capture client signatures quickly, track contracts in real-time, and set automatic reminders to ensure timely completions. Lumin Sign’s user-friendly interface removes barriers by eliminating the need for clients to sign up. With enterprise-level security and compliance certifications, Lumin Sign ensures that your e-signatures are safe and meet industry standards.
  • 20
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 21
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 22
    Blackbaud Luminate Advocacy
    Light up your campaigns with Blackbaud Luminate Advocacy, the leading solution to mobilize your supporters, influence policy, and win. Blackbaud Luminate Advocacy provides the insight required to reach those most likely to act and convert their passion for a social cause into results. Blackbaud Luminate Advocacy allows you to amplify your voice to influence policymakers who can champion your campaigns and help enact change. Count on near 100% delivery for the House, Senate, and President of the United States, including delivery to web forms that require CAPTCHA and other logic puzzles. Blackbaud is the only vendor to embed delivery reporting in its influencer campaign management tool. Blackbaud Luminate Advocacy helps nonprofits get more done by offering them the strongest, most complete solution. No one else can offer advocacy capabilities as deeply integrated with your fundraising, marketing, and more.
  • 23
    Nim

    Nim

    Nim

    Nim is a statically typed compiled systems programming language. It combines successful concepts from mature languages like Python, Ada and Modula. Nim generates native dependency-free executables, not dependent on a virtual machine, which are small and allow easy redistribution. Nim's memory management is deterministic and customizable with destructors and move semantics, inspired by C++ and Rust. It is well-suited for embedded, hard-realtime systems. Modern concepts like zero-overhead iterators and compile-time evaluation of user-defined functions, in combination with the preference of value-based datatypes allocated on the stack, lead to extremely performant code. Support for various backends: it compiles to C, C++ or JavaScript so that Nim can be used for all backend and frontend needs.
    Starting Price: Free
  • 24
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 25
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 26
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
    Starting Price: Free
  • 27
    Bayesforge

    Bayesforge

    Quantum Programming Studio

    Bayesforge™ is a Linux machine image that curates the very best open source software for the data scientist who needs advanced analytical tools, as well as for quantum computing and computational mathematics practitioners who seek to work with one of the major QC frameworks. The image combines common machine learning frameworks, such as PyTorch and TensorFlow, with open source software from D-Wave, Rigetti as well as the IBM Quantum Experience and Google's new quantum computing language Cirq, as well as other advanced QC frameworks. For instance our quantum fog modeling framework, and our quantum compiler Qubiter which can cross-compile to all major architectures. All software is made accessible through the Jupyter WebUI which, due to its modular architecture, allows the user to code in Python, R, and Octave.
  • 28
    TensorBoard

    TensorBoard

    Tensorflow

    TensorBoard is TensorFlow's comprehensive visualization toolkit designed to facilitate machine learning experimentation. It enables users to track and visualize metrics such as loss and accuracy, visualize the model graph (operations and layers), view histograms of weights, biases, or other tensors as they change over time, project embeddings to a lower-dimensional space, and display images, text, and audio data. Additionally, TensorBoard offers profiling capabilities to optimize TensorFlow programs. These features collectively provide a suite of tools to understand, debug, and optimize TensorFlow programs, enhancing the machine learning workflow. In machine learning, to improve something you often need to be able to measure it. TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics, visualizing the model graph, and projecting embeddings to a lower dimensional space.
    Starting Price: Free
  • 29
    ONNX

    ONNX

    ONNX

    ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute.
  • 30
    JAX

    JAX

    JAX

    ​JAX is a Python library designed for high-performance numerical computing and machine learning research. It offers a NumPy-like API, facilitating seamless adoption for those familiar with NumPy. Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • 31
    Luminous

    Luminous

    Luminous

    Spreadsheets suck, cheap software doesn't work, and enterprise software is overkill. Enter Luminous, the first lite ERP for scaling your ecommerce business from painful growth to lasting success. Most ecommerce solutions are either poorly built online tools with no support or ultra-expensive ERPs that are full of unnecessary features. In between that is Luminous, the first system made for the unmet needs of ecommerce operations and inventory. Luminous easily integrates with all the major ecommerce platforms you use, as well as shipping and accounting platforms to keep all your data in one place. Everything you need for inventory from procurement to distribution in one simple system. Pick, pack, and more; completely manage all the ins and outs of your warehouse. From 3PL to FBA, forecast omnichannel demand to meet customer expectations. Make data-driven decisions about how much to produce in response to real-time demand.
  • 32
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 33
    Latent AI

    Latent AI

    Latent AI

    We take the hard work out of AI processing on the edge. The Latent AI Efficient Inference Platform (LEIP) enables adaptive AI at the edge by optimizing for compute, energy and memory without requiring changes to existing AI/ML infrastructure and frameworks. LEIP is a modular, fully-integrated workflow designed to train, quantize, adapt and deploy edge AI neural networks. LEIP is a modular, fully-integrated workflow designed to train, quantize and deploy edge AI neural networks. Latent AI believes in a vibrant and sustainable future driven by the power of AI and the promise of edge computing. Our mission is to deliver on the vast potential of edge AI with solutions that are efficient, practical, and useful. Latent AI helps a variety of federal and commercial organizations gain the most from their edge AI with an automated edge MLOps pipeline that creates ultra-efficient, compressed, and secured edge models at scale while also removing all maintenance and configuration concerns
  • 34
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 35
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 36
    MindSpore

    MindSpore

    MindSpore

    ​MindSpore is an open source deep learning framework developed by Huawei, designed to facilitate easy development, efficient execution, and deployment across cloud, edge, and device environments. It supports multiple programming paradigms, including both object-oriented and functional programming, allowing users to define AI networks using native Python syntax. MindSpore offers a unified programming experience that seamlessly integrates dynamic and static graphs, enhancing compatibility and performance. It is optimized for various hardware platforms, including CPUs, GPUs, and NPUs, and is particularly well-suited for Huawei's Ascend AI processors. MindSpore's architecture comprises four layers, the model layer, MindExpression (ME) for AI model development, MindCompiler for optimization, and the runtime layer supporting device-edge-cloud collaboration. Additionally, MindSpore provides a rich ecosystem of domain-specific toolkits and extension packages, such as MindSpore NLP.
    Starting Price: Free
  • 37
    Aleph Alpha

    Aleph Alpha

    Aleph Alpha

    Lumi provides revolutionary interaction capabilities with unstructured data and information for your organization’s growth. It is a conversational module built on top of our base AI-model “Luminous”. Simply connect Lumi to your data and information and everything is ready! Benefits of developing or implementing your conversational agent with our Lumi module. Connect your data and instantly interact with it. Lumi doesn’t learn from your data. Infuse character traits to fit customers’ unique language styles. Ask a question in German, even if the dataset is in English. Data language doesn’t matter anymore. Reach everyone, even if their grammar and spelling contain errors. Learn to trust where Lumi gets is answers from. Use our knowledge worker modules to provide superior access and handling of unstructured data and information to produce digital tools and products for your value creation. It is built on top of our base AI-model “Luminous” and essentially gathers and analyzes data.
    Starting Price: €1 per 5 credits
  • 38
    ThirdAI

    ThirdAI

    ThirdAI

    ThirdAI (pronunciation: /THərd ī/ Third eye) is a cutting-edge Artificial intelligence startup carving scalable and sustainable AI. ThirdAI accelerator builds hash-based processing algorithms for training and inference with neural networks. The technology is a result of 10 years of innovation in finding efficient (beyond tensor) mathematics for deep learning. Our algorithmic innovation has demonstrated how we can make Commodity x86 CPUs 15x or faster than most potent NVIDIA GPUs for training large neural networks. The demonstration has shaken the common knowledge prevailing in the AI community that specialized processors like GPUs are significantly superior to CPUs for training neural networks. Our innovation would not only benefit current AI training by shifting to lower-cost CPUs, but it should also allow the “unlocking” of AI training workloads on GPUs that were not previously feasible.
  • 39
    Keras

    Keras

    Keras

    Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 40
    VLLM

    VLLM

    VLLM

    VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
  • 41
    Quick Batch File Compiler
    Quick Batch File Compiler is the world's first optimizing compiler for batch files. The compiled program can be run in Windows 7/8/10/11 without any restrictions. An .EXE file is much harder to casually reverse-engineer, so this could be a way to conceal a particular batch file's operations from an end user. Content of your batch file will be encrypted and protected from changes. It is very important to understand the difference between a compiler and converters. Our compiler creates executable binary code that runs faster and is safer. As the complexity of the script grows, so does the performance gain after compilation. The converters work like self-extracting archives, unpack your script into a temporary folder and launch it for execution through the standard cmd.exe interpreter. In this case, anyone can see the contents of your script, along with passwords and other information that you tried to hide.
    Starting Price: $39.95
  • 42
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
    Starting Price: Free
  • 43
    Valohai

    Valohai

    Valohai

    Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.
    Starting Price: $560 per month
  • 44
    Clarifai

    Clarifai

    Clarifai

    Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for developing better, faster and stronger AI. We help our customers create innovative solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. The platform comes with the broadest repository of pre-trained, out-of-the-box AI models built with millions of inputs and context. Our models give you a head start; extending your own custom AI models. Clarifai Community builds upon this and offers 1000s of pre-trained models and workflows from Clarifai and other leading AI builders. Users can build and share models with other community members. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been recognized by leading analysts, IDC, Forrester and Gartner, as a leading computer vision AI platform. Visit clarifai.com
  • 45
    NetApp AIPod
    NetApp AIPod is a comprehensive AI infrastructure solution designed to streamline the deployment and management of artificial intelligence workloads. By integrating NVIDIA-validated turnkey solutions, such as NVIDIA DGX BasePOD™ and NetApp's cloud-connected all-flash storage, AIPod consolidates analytics, training, and inference capabilities into a single, scalable system. This convergence enables organizations to rapidly implement AI workflows, from model training to fine-tuning and inference, while ensuring robust data management and security. With preconfigured infrastructure optimized for AI tasks, NetApp AIPod reduces complexity, accelerates time to insights, and supports seamless integration into hybrid cloud environments.
  • 46
    Neuri

    Neuri

    Neuri

    We conduct and implement cutting-edge research on artificial intelligence to create real advantage in financial investment. Illuminating the financial market with ground-breaking neuro-prediction. We combine novel deep reinforcement learning algorithms and graph-based learning with artificial neural networks for modeling and predicting time series. Neuri strives to generate synthetic data emulating the global financial markets, testing it with complex simulations of trading behavior. We bet on the future of quantum optimization in enabling our simulations to surpass the limits of classical supercomputing. Financial markets are highly fluid, with dynamics evolving over time. As such we build AI algorithms that adapt and learn continuously, in order to uncover the connections between different financial assets, classes and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored.
  • 47
    Zig

    Zig

    Zig Software Foundation

    Zig is a general-purpose programming language and toolchain for maintaining robust, optimal and reusable software. Focus on debugging your application rather than debugging your programming language knowledge. A fresh approach to metaprogramming based on compile-time code execution and lazy evaluation. No hidden control flow. No hidden memory allocations. No preprocessor, no macros. Call any function at compile-time. Manipulate types as values without runtime overhead. Comptime emulates the target architecture. Use Zig as a zero-dependency, drop-in C/C++ compiler that supports cross-compilation out-of-the-box. Leverage zig build to create a consistent development environment across all platforms. Add a Zig compilation unit to C/C++ projects; cross-language LTO is enabled by default.
    Starting Price: Free
  • 48
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 49
    Blackbaud Luminate Online
    Blackbaud Luminate Online provides everything you need to acquire more constituents, build online fundraising campaigns, and nurture sustainable donor relationships. Included in every Luminate Online implementation are strategic ongoing services that not only get you up and running but help set your organization up for success. Our consultants guide you in designing a fundraising or engagement campaign of your choice, chosen from our library of best practice templates, and then they provide 3 months of marketing strategies to get your campaign off the ground. Plus, with powerful peer-to-peer and advocacy add-ons and CRM integrations, you can create a full nonprofit engagement experience for your supporters and organization. Manage effective email marketing campaigns every step of the way—from creation and testing to targeted delivery and follow-up.
  • 50
    distcc

    distcc

    distcc

    Distcc is a distributed compilation system that accelerates C, C++, Objective-C, and Fortran builds by offloading compile jobs across multiple networked machines. It integrates seamlessly with GCC and Clang toolchains, transparently intercepting compiler calls and redistributing them to remote daemons while preserving optimization flags, include paths, and dependency tracking. Its client-server architecture features a lightweight listener that manages job queues, prioritizes local compilation when needed, and automatically detects available hosts via simple configuration or DNS. Distcc supports cross-compilation environments, SSH tunneling for secure clusters, blacklisting of unreliable servers, and integration with build systems like Make, CMake and Ninja. Monitoring tools provide real-time statistics on job distribution and throughput, and compatibility with compilation databases (compdb) enables granular control over distributed workloads.
    Starting Price: Free