voyage-3-large
Voyage AI has unveiled voyage-3-large, a cutting-edge general-purpose and multilingual embedding model that leads across eight evaluated domains, including law, finance, and code, outperforming OpenAI-v3-large and Cohere-v3-English by averages of 9.74% and 20.71%, respectively. Enabled by Matryoshka learning and quantization-aware training, it supports embeddings of 2048, 1024, 512, and 256 dimensions, along with multiple quantization options such as 32-bit floating point, signed and unsigned 8-bit integer, and binary precision, significantly reducing vector database costs with minimal impact on retrieval quality. Notably, voyage-3-large offers a 32K-token context length, surpassing OpenAI's 8K and Cohere's 512 tokens. Evaluations across 100 datasets in diverse domains demonstrate its superior performance, with flexible precision and dimensionality options enabling substantial storage savings without compromising quality.
Learn more
word2vec
Word2Vec is a neural network-based technique for learning word embeddings, developed by researchers at Google. It transforms words into continuous vector representations in a multi-dimensional space, capturing semantic relationships based on context. Word2Vec uses two main architectures: Skip-gram, which predicts surrounding words given a target word, and Continuous Bag-of-Words (CBOW), which predicts a target word based on surrounding words. By training on large text corpora, Word2Vec generates word embeddings where similar words are positioned closely, enabling tasks like semantic similarity, analogy solving, and text clustering. The model was influential in advancing NLP by introducing efficient training techniques such as hierarchical softmax and negative sampling. Though newer embedding models like BERT and Transformer-based methods have surpassed it in complexity and performance, Word2Vec remains a foundational method in natural language processing and machine learning research.
Learn more
GloVe
GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.
Learn more
voyage-code-3
Voyage AI introduces voyage-code-3, a next-generation embedding model optimized for code retrieval. It outperforms OpenAI-v3-large and CodeSage-large by an average of 13.80% and 16.81% on a suite of 32 code retrieval datasets, respectively. It supports embeddings of 2048, 1024, 512, and 256 dimensions and offers multiple embedding quantization options, including float (32-bit), int8 (8-bit signed integer), uint8 (8-bit unsigned integer), binary (bit-packed int8), and ubinary (bit-packed uint8). With a 32 K-token context length, it surpasses OpenAI's 8K and CodeSage Large's 1K context lengths. Voyage-code-3 employs Matryoshka learning to create embeddings with a nested family of various lengths within a single vector. This allows users to vectorize documents into a 2048-dimensional vector and later use shorter versions (e.g., 256, 512, or 1024 dimensions) without re-invoking the embedding model.
Learn more