8 Integrations with LaunchX
View a list of LaunchX integrations and software that integrates with LaunchX below. Compare the best LaunchX integrations as well as features, ratings, user reviews, and pricing of software that integrates with LaunchX. Here are the current LaunchX integrations in 2026:
-
1
TensorFlow
TensorFlow
An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.Starting Price: Free -
2
Raspberry Pi OS
Raspberry Pi Foundation
Raspberry Pi Imager is the quick and easy way to install Raspberry Pi OS and other operating systems to a microSD card, ready to use with your Raspberry Pi. Watch our 45-second video to learn how to install an operating system using Raspberry Pi Imager. Download and install Raspberry Pi Imager to a computer with an SD card reader. Put the SD card you'll use with your Raspberry Pi into the reader and run Raspberry Pi Imager. Browse a range of operating systems provided by Raspberry Pi and by other organisations, and download them to install manually. -
3
OpenVINO
Intel
The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.Starting Price: Free -
4
NVIDIA TensorRT
NVIDIA
NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.Starting Price: Free -
5
Arm MAP
Arm
No need to change your code or the way you build it. Profiling for applications running on more than one server and multiple processes. Clear views of bottlenecks in I/O, in computing, in a thread, or in multi-process activity. Deep insight into actual processor instruction types that affect your performance. View memory usage over time to discover high watermarks and changes across the complete memory footprint. Arm MAP is a unique scalable low-overhead profiler, available standalone or as part of the Arm Forge debug and profile suite. It helps server and HPC code developers to accelerate their software by revealing the causes of slow performance. It is used from multicore Linux workstations through to supercomputers. You can profile realistic test cases that you care most about with typically under 5% runtime overhead. The interactive user interface is clear and intuitive, designed for developers and computational scientists. -
6
NVIDIA AI Enterprise
NVIDIA
The software layer of the NVIDIA AI platform, NVIDIA AI Enterprise accelerates the data science pipeline and streamlines development and deployment of production AI including generative AI, computer vision, speech AI and more. With over 50 frameworks, pretrained models and development tools, NVIDIA AI Enterprise is designed to accelerate enterprises to the leading edge of AI, while also simplifying AI to make it accessible to every enterprise. The adoption of artificial intelligence and machine learning has gone mainstream, and is core to nearly every company’s competitive strategy. One of the toughest challenges for enterprises is the struggle with siloed infrastructure across the cloud and on-premises data centers. AI requires their environments to be managed as a common platform, instead of islands of compute. -
7
ONNX
ONNX
ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute. -
8
NetsPresso
Nota AI
NetsPresso is a hardware-aware AI model optimization platform. NetsPresso powers on-device AI across industries, and it's the ultimate platform for hardware-aware AI model development. Lightweight models of LLaMA and Vicuna enable efficient text generation. BK-SDM is a lightweight version of Stable Diffusion models. VLMs combine visual data with natural language understanding. NetsPresso resolves Cloud and server-based AI solutions-related issues, such as limited network, excessive cost, and privacy breaches. NetsPresso is an automatic model compression platform that downsizes computer vision models to a size small enough to be deployed independently on the smaller edge and low-specification devices. Optimization of target models being key, the platform combines a variety of compression methods which enables it to downsize AI models without causing performance degradation.
- Previous
- You're on page 1
- Next