Audience
AI engineers and infrastructure teams looking for a tool to lower latency, reduce compute cost, and scale throughput
About LMCache
LMCache is an open source Knowledge Delivery Network (KDN) designed as a caching layer for large language model serving that accelerates inference by reusing KV (key-value) caches across repeated or overlapping computations. It enables fast prompt caching, allowing LLMs to “prefill” recurring text only once and then reuse those stored KV caches, even in non-prefix positions, across multiple serving instances. This approach reduces time to first token, saves GPU cycles, and increases throughput in scenarios such as multi-round question answering or retrieval augmented generation. LMCache supports KV cache offloading (moving cache from GPU to CPU or disk), cache sharing across instances, and disaggregated prefill, which separates the prefill and decoding phases for resource efficiency. It is compatible with inference engines like vLLM and TGI and supports compressed storage, blending techniques to merge caches, and multiple backend storage options.