Alternatives to Kimi K2 Thinking

Compare Kimi K2 Thinking alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Kimi K2 Thinking in 2025. Compare features, ratings, user reviews, pricing, and more from Kimi K2 Thinking competitors and alternatives in order to make an informed decision for your business.

  • 1
    Claude Opus 4.5
    Claude Opus 4.5 is Anthropic’s newest flagship model, delivering major improvements in reasoning, coding, agentic workflows, and real-world problem solving. It outperforms previous models and leading competitors on benchmarks such as SWE-bench, multilingual coding tests, and advanced agent evaluations. Opus 4.5 also introduces stronger safety features, including significantly higher resistance to prompt injection and improved alignment across sensitive tasks. Developers gain new controls through the Claude API—like effort parameters, context compaction, and advanced tool use—allowing for more efficient, longer-running agentic workflows. Product updates across Claude, Claude Code, the Chrome extension, and Excel integrations expand how users interact with the model for software engineering, research, and everyday productivity. Overall, Claude Opus 4.5 marks a substantial step forward in capability, reliability, and usability for developers, enterprises, and end users.
  • 2
    DeepSeek-V3.2
    DeepSeek-V3.2 is a next-generation open large language model designed for efficient reasoning, complex problem solving, and advanced agentic behavior. It introduces DeepSeek Sparse Attention (DSA), a long-context attention mechanism that dramatically reduces computation while preserving performance. The model is trained with a scalable reinforcement learning framework, allowing it to achieve results competitive with GPT-5 and even surpass it in its Speciale variant. DeepSeek-V3.2 also includes a large-scale agent task synthesis pipeline that generates structured reasoning and tool-use demonstrations for post-training. The model features an updated chat template with new tool-calling logic and the optional developer role for agent workflows. With gold-medal performance in the IMO and IOI 2025 competitions, DeepSeek-V3.2 demonstrates elite reasoning capabilities for both research and applied AI scenarios.
  • 3
    DeepSeek-V3.2-Speciale
    DeepSeek-V3.2-Speciale is a high-compute variant of the DeepSeek-V3.2 model, created specifically for deep reasoning and advanced problem-solving tasks. It builds on DeepSeek Sparse Attention (DSA), a custom long-context attention mechanism that reduces computational overhead while preserving high performance. Through a large-scale reinforcement learning framework and extensive post-training compute, the Speciale variant surpasses GPT-5 on reasoning benchmarks and matches the capabilities of Gemini-3.0-Pro. The model achieved gold-medal performance in the International Mathematical Olympiad (IMO) 2025 and International Olympiad in Informatics (IOI) 2025. DeepSeek-V3.2-Speciale does not support tool-calling, making it purely optimized for uninterrupted reasoning and analytical accuracy. Released under the MIT license, it provides researchers and developers an open, state-of-the-art model focused entirely on high-precision reasoning.
  • 4
    Grok 4.1 Fast
    Grok 4.1 Fast is the newest xAI model designed to deliver advanced tool-calling capabilities with a massive 2-million-token context window. It excels at complex real-world tasks such as customer support, finance, troubleshooting, and dynamic agent workflows. The model pairs seamlessly with the new Agent Tools API, which enables real-time web search, X search, file retrieval, and secure code execution. This combination gives developers the power to build fully autonomous, production-grade agents that plan, reason, and use tools effectively. Grok 4.1 Fast is trained with long-horizon reinforcement learning, ensuring stable multi-turn accuracy even across extremely long prompts. With its speed, cost-efficiency, and high benchmark scores, it sets a new standard for scalable enterprise-grade AI agents.
  • 5
    Grok 4.1 Thinking
    Grok 4.1 Thinking is xAI’s advanced reasoning-focused AI model designed for deeper analysis, reflection, and structured problem-solving. It uses explicit thinking tokens to reason through complex prompts before delivering a response, resulting in more accurate and context-aware outputs. The model excels in tasks that require multi-step logic, nuanced understanding, and thoughtful explanations. Grok 4.1 Thinking demonstrates a strong, coherent personality while maintaining analytical rigor and reliability. It has achieved the top overall ranking on the LMArena Text Leaderboard, reflecting strong human preference in blind evaluations. The model also shows leading performance in emotional intelligence and creative reasoning benchmarks. Grok 4.1 Thinking is built for users who value clarity, depth, and defensible reasoning in AI interactions.
  • 6
    GLM-4.7

    GLM-4.7

    Zhipu AI

    GLM-4.7 is an advanced large language model designed to significantly elevate coding, reasoning, and agentic task performance. It delivers major improvements over GLM-4.6 in multilingual coding, terminal-based tasks, and real-world software engineering benchmarks such as SWE-bench and Terminal Bench. GLM-4.7 supports “thinking before acting,” enabling more stable, accurate, and controllable behavior in complex coding and agent workflows. The model also introduces strong gains in UI and frontend generation, producing cleaner webpages, better layouts, and more polished slides. Enhanced tool-using capabilities allow GLM-4.7 to perform more effectively in web browsing, automation, and agent benchmarks. Its reasoning and mathematical performance has improved substantially, showing strong results on advanced evaluation suites. GLM-4.7 is available via Z.ai, API platforms, coding agents, and local deployment for flexible adoption.
  • 7
    GPT-5.2

    GPT-5.2

    OpenAI

    GPT-5.2 is the newest evolution in the GPT-5 series, engineered to deliver even greater intelligence, adaptability, and conversational depth. This release introduces enhanced model variants that refine how ChatGPT reasons, communicates, and responds to complex user intent. GPT-5.2 Instant remains the primary, high-usage model—now faster, more context-aware, and more precise in following instructions. GPT-5.2 Thinking takes advanced reasoning further, offering clearer step-by-step logic, improved consistency on multi-stage problems, and more efficient handling of long or intricate tasks. The system automatically routes each query to the most suitable variant, ensuring optimal performance without requiring user selection. Beyond raw intelligence gains, GPT-5.2 emphasizes more natural dialogue flow, stronger intent alignment, and a smoother, more humanlike communication style.
  • 8
    Devstral 2

    Devstral 2

    Mistral AI

    Devstral 2 is a next-generation, open source agentic AI model tailored for software engineering: it doesn’t just suggest code snippets, it understands and acts across entire codebases, enabling multi-file edits, bug fixes, refactoring, dependency resolution, and context-aware code generation. The Devstral 2 family includes a large 123-billion-parameter model as well as a smaller 24-billion-parameter variant (“Devstral Small 2”), giving teams flexibility; the larger model excels in heavy-duty coding tasks requiring deep context, while the smaller one can run on more modest hardware. With a vast context window of up to 256 K tokens, Devstral 2 can reason across extensive repositories, track project history, and maintain a consistent understanding of lengthy files, an advantage for complex, real-world projects. The CLI tracks project metadata, Git statuses, and directory structure to give the model context, making “vibe-coding” more powerful.
  • 9
    Devstral Small 2
    Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.
  • 10
    MiniMax M2

    MiniMax M2

    MiniMax

    MiniMax M2 is an open source foundation model built specifically for agentic applications and coding workflows, striking a new balance of performance, speed, and cost. It excels in end-to-end development scenarios, handling programming, tool-calling, and complex, long-chain workflows with capabilities such as Python integration, while delivering inference speeds of around 100 tokens per second and offering API pricing at just ~8% of the cost of comparable proprietary models. The model supports “Lightning Mode” for high-speed, lightweight agent tasks, and “Pro Mode” for in-depth full-stack development, report generation, and web-based tool orchestration; its weights are fully open source and available for local deployment with vLLM or SGLang. MiniMax M2 positions itself as a production-ready model that enables agents to complete independent tasks, such as data analysis, programming, tool orchestration, and large-scale multi-step logic at real organizational scale.
    Starting Price: $0.30 per million input tokens
  • 11
    Mistral Large 3
    Mistral Large 3 is a next-generation, open multimodal AI model built with a powerful sparse Mixture-of-Experts architecture featuring 41B active parameters out of 675B total. Designed from scratch on NVIDIA H200 GPUs, it delivers frontier-level reasoning, multilingual performance, and advanced image understanding while remaining fully open-weight under the Apache 2.0 license. The model achieves top-tier results on modern instruction benchmarks, positioning it among the strongest permissively licensed foundation models available today. With native support across vLLM, TensorRT-LLM, and major cloud providers, Mistral Large 3 offers exceptional accessibility and performance efficiency. Its design enables enterprise-grade customization, letting teams fine-tune or adapt the model for domain-specific workflows and proprietary applications. Mistral Large 3 represents a major advancement in open AI, offering frontier intelligence without sacrificing transparency or control.
  • 12
    Kimi K2

    Kimi K2

    Moonshot AI

    Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.
  • 13
    Qwen3-Max

    Qwen3-Max

    Alibaba

    Qwen3-Max is Alibaba’s latest trillion-parameter large language model, designed to push performance in agentic tasks, coding, reasoning, and long-context processing. It is built atop the Qwen3 family and benefits from the architectural, training, and inference advances introduced there; mixing thinker and non-thinker modes, a “thinking budget” mechanism, and support for dynamic mode switching based on complexity. The model reportedly processes extremely long inputs (hundreds of thousands of tokens), supports tool invocation, and exhibits strong performance on benchmarks in coding, multi-step reasoning, and agent benchmarks (e.g., Tau2-Bench). While its initial variant emphasizes instruction following (non-thinking mode), Alibaba plans to bring reasoning capabilities online to enable autonomous agent behavior. Qwen3-Max inherits multilingual support and extensive pretraining on trillions of tokens, and it is delivered via API interfaces compatible with OpenAI-style functions.
  • 14
    GigaChat 3 Ultra
    GigaChat 3 Ultra is a 702-billion-parameter Mixture-of-Experts model built from scratch to deliver frontier-level reasoning, multilingual capability, and deep Russian-language fluency. It activates just 36 billion parameters per token, enabling massive scale with practical inference speeds. The model was trained on a 14-trillion-token corpus combining natural, multilingual, and high-quality synthetic data to strengthen reasoning, math, coding, and linguistic performance. Unlike modified foreign checkpoints, GigaChat 3 Ultra is entirely original—giving developers full control, modern alignment, and a dataset free of inherited limitations. Its architecture leverages MoE, MTP, and MLA to match open-source ecosystems and integrate easily with popular inference and fine-tuning tools. With leading results on Russian benchmarks and competitive performance on global tasks, GigaChat 3 Ultra represents one of the largest and most capable open-source LLMs in the world.
  • 15
    GLM-4.5
    GLM‑4.5 is Z.ai’s latest flagship model in the GLM family, engineered with 355 billion total parameters (32 billion active) and a companion GLM‑4.5‑Air variant (106 billion total, 12 billion active) to unify advanced reasoning, coding, and agentic capabilities in one architecture. It operates in a “thinking” mode for complex, multi‑step reasoning and tool use, and a “non‑thinking” mode for instant responses, supporting up to 128 K token context length and native function calling. Available via the Z.ai chat platform and API, with open weights on HuggingFace and ModelScope, GLM‑4.5 ingests diverse inputs to solve general problem‑solving, common‑sense reasoning, coding from scratch or within existing projects, and end‑to‑end agent workflows such as web browsing and slide generation. Built on a Mixture‑of‑Experts design with loss‑free balance routing, grouped‑query attention, and an MTP layer for speculative decoding, it delivers enterprise‑grade performance.
  • 16
    HunyuanOCR

    HunyuanOCR

    Tencent

    Tencent Hunyuan is a large-scale, multimodal AI model family developed by Tencent that spans text, image, video, and 3D modalities, designed for general-purpose AI tasks like content generation, visual reasoning, and business automation. Its model lineup includes variants optimized for natural language understanding, multimodal vision-language comprehension (e.g., image & video understanding), text-to-image creation, video generation, and 3D content generation. Hunyuan models leverage a mixture-of-experts architecture and other innovations (like hybrid “mamba-transformer” designs) to deliver strong performance on reasoning, long-context understanding, cross-modal tasks, and efficient inference. For example, the vision-language model Hunyuan-Vision-1.5 supports “thinking-on-image”, enabling deep multimodal understanding and reasoning on images, video frames, diagrams, or spatial data.
  • 17
    DeepSeek-V2

    DeepSeek-V2

    DeepSeek

    DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.
  • 18
    Ministral 8B

    Ministral 8B

    Mistral AI

    Mistral AI has introduced two advanced models for on-device computing and edge applications, named "les Ministraux": Ministral 3B and Ministral 8B. These models excel in knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B parameter range. They support up to 128k context length and are designed for various applications, including on-device translation, offline smart assistants, local analytics, and autonomous robotics. Ministral 8B features an interleaved sliding-window attention pattern for faster and more memory-efficient inference. Both models can function as intermediaries in multi-step agentic workflows, handling tasks like input parsing, task routing, and API calls based on user intent with low latency and cost. Benchmark evaluations indicate that les Ministraux consistently outperforms comparable models across multiple tasks. As of October 16, 2024, both models are available, with Ministral 8B priced at $0.1 per million tokens.
  • 19
    GLM-4.5V

    GLM-4.5V

    Zhipu AI

    GLM-4.5V builds on the GLM-4.5-Air foundation, using a Mixture-of-Experts (MoE) architecture with 106 billion total parameters and 12 billion activation parameters. It achieves state-of-the-art performance among open-source VLMs of similar scale across 42 public benchmarks, excelling in image, video, document, and GUI-based tasks. It supports a broad range of multimodal capabilities, including image reasoning (scene understanding, spatial recognition, multi-image analysis), video understanding (segmentation, event recognition), complex chart and long-document parsing, GUI-agent workflows (screen reading, icon recognition, desktop automation), and precise visual grounding (e.g., locating objects and returning bounding boxes). GLM-4.5V also introduces a “Thinking Mode” switch, allowing users to choose between fast responses or deeper reasoning when needed.
  • 20
    Phi-4-mini-flash-reasoning
    Phi-4-mini-flash-reasoning is a 3.8 billion‑parameter open model in Microsoft’s Phi family, purpose‑built for edge, mobile, and other resource‑constrained environments where compute, memory, and latency are tightly limited. It introduces the SambaY decoder‑hybrid‑decoder architecture with Gated Memory Units (GMUs) interleaved alongside Mamba state‑space and sliding‑window attention layers, delivering up to 10× higher throughput and a 2–3× reduction in latency compared to its predecessor without sacrificing advanced math and logic reasoning performance. Supporting a 64 K‑token context length and fine‑tuned on high‑quality synthetic data, it excels at long‑context retrieval, reasoning tasks, and real‑time inference, all deployable on a single GPU. Phi-4-mini-flash-reasoning is available today via Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, enabling developers to build fast, scalable, logic‑intensive applications.
  • 21
    Phi-4-reasoning
    Phi-4-reasoning is a 14-billion parameter transformer-based language model optimized for complex reasoning tasks, including math, coding, algorithmic problem solving, and planning. Trained via supervised fine-tuning of Phi-4 on carefully curated "teachable" prompts and reasoning demonstrations generated using o3-mini, it generates detailed reasoning chains that effectively leverage inference-time compute. Phi-4-reasoning incorporates outcome-based reinforcement learning to produce longer reasoning traces. It outperforms significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B and approaches the performance levels of the full DeepSeek-R1 model across a wide range of reasoning tasks. Phi-4-reasoning is designed for environments with constrained computing or latency. Fine-tuned with synthetic data generated by DeepSeek-R1, it provides high-quality, step-by-step problem solving.
  • 22
    Claude Sonnet 4.5
    Claude Sonnet 4.5 is Anthropic’s latest frontier model, designed to excel in long-horizon coding, agentic workflows, and intensive computer use while maintaining safety and alignment. It achieves state-of-the-art performance on the SWE-bench Verified benchmark (for software engineering) and leads on OSWorld (a computer use benchmark), with the ability to sustain focus over 30 hours on complex, multi-step tasks. The model introduces improvements in tool handling, memory management, and context processing, enabling more sophisticated reasoning, better domain understanding (from finance and law to STEM), and deeper code comprehension. It supports context editing and memory tools to sustain long conversations or multi-agent tasks, and allows code execution and file creation within Claude apps. Sonnet 4.5 is deployed at AI Safety Level 3 (ASL-3), with classifiers protecting against inputs or outputs tied to risky domains, and includes mitigations against prompt injection.
  • 23
    Qwen Code
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results on Agentic Coding, Browser‑Use, and Tool‑Use tasks comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and more.
  • 24
    Qwen3-Coder
    Qwen3‑Coder is an agentic code model available in multiple sizes, led by the 480B‑parameter Mixture‑of‑Experts variant (35B active) that natively supports 256K‑token contexts (extendable to 1M) and achieves state‑of‑the‑art results comparable to Claude Sonnet 4. Pre‑training on 7.5T tokens (70 % code) and synthetic data cleaned via Qwen2.5‑Coder optimized both coding proficiency and general abilities, while post‑training employs large‑scale, execution‑driven reinforcement learning, scaling test‑case generation for diverse coding challenges, and long‑horizon RL across 20,000 parallel environments to excel on multi‑turn software‑engineering benchmarks like SWE‑Bench Verified without test‑time scaling. Alongside the model, the open source Qwen Code CLI (forked from Gemini Code) unleashes Qwen3‑Coder in agentic workflows with customized prompts, function calling protocols, and seamless integration with Node.js, OpenAI SDKs, and environment variables.
  • 25
    Ministral 3B

    Ministral 3B

    Mistral AI

    Mistral AI introduced two state-of-the-art models for on-device computing and edge use cases, named "les Ministraux": Ministral 3B and Ministral 8B. These models set a new frontier in knowledge, commonsense reasoning, function-calling, and efficiency in the sub-10B category. They can be used or tuned for various applications, from orchestrating agentic workflows to creating specialist task workers. Both models support up to 128k context length (currently 32k on vLLM), and Ministral 8B features a special interleaved sliding-window attention pattern for faster and memory-efficient inference. These models were built to provide a compute-efficient and low-latency solution for scenarios such as on-device translation, internet-less smart assistants, local analytics, and autonomous robotics. Used in conjunction with larger language models like Mistral Large, les Ministraux also serve as efficient intermediaries for function-calling in multi-step agentic workflows.
  • 26
    Phi-4-mini-reasoning
    Phi-4-mini-reasoning is a 3.8-billion parameter transformer-based language model optimized for mathematical reasoning and step-by-step problem solving in environments with constrained computing or latency. Fine-tuned with synthetic data generated by the DeepSeek-R1 model, it balances efficiency with advanced reasoning ability. Trained on over one million diverse math problems spanning multiple levels of difficulty from middle school to Ph.D. level, Phi-4-mini-reasoning outperforms its base model on long sentence generation across various evaluations and surpasses larger models like OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. It features a 128K-token context window and supports function calling, enabling integration with external tools and APIs. Phi-4-mini-reasoning can be quantized using Microsoft Olive or Apple MLX Framework for deployment on edge devices such as IoT, laptops, and mobile devices.
  • 27
    Olmo 3
    Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.
  • 28
    GPT-5.2 Thinking
    GPT-5.2 Thinking is the highest-capability configuration in OpenAI’s GPT-5.2 model family, engineered for deep, expert-level reasoning, complex task execution, and advanced problem solving across long contexts and professional domains. Built on the foundational GPT-5.2 architecture with improvements in grounding, stability, and reasoning quality, this variant applies more compute and reasoning effort to generate responses that are more accurate, structured, and contextually rich when handling highly intricate workflows, multi-step analysis, and domain-specific challenges. GPT-5.2 Thinking excels at tasks that require sustained logical coherence, such as detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and sophisticated technical writing, and it outperforms lighter variants on benchmarks that test professional skills and deep comprehension.
  • 29
    DeepSeek-Coder-V2
    DeepSeek-Coder-V2 is an open source code language model designed to excel in programming and mathematical reasoning tasks. It features a Mixture-of-Experts (MoE) architecture with 236 billion total parameters and 21 billion activated parameters per token, enabling efficient processing and high performance. The model was trained on an extensive dataset of 6 trillion tokens, enhancing its capabilities in code generation and mathematical problem-solving. DeepSeek-Coder-V2 supports over 300 programming languages and has demonstrated superior performance on benchmarks such surpassing other models. It is available in multiple variants, including DeepSeek-Coder-V2-Instruct, optimized for instruction-based tasks; DeepSeek-Coder-V2-Base, suitable for general text generation; and lightweight versions like DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, designed for environments with limited computational resources.
  • 30
    GPT-5.1-Codex-Max
    GPT-5.1-Codex-Max is the high-capability variant of the GPT-5.1-Codex series designed specifically for software engineering and agentic code workflows. It builds on the base GPT-5.1 architecture with a focus on long-horizon tasks such as full project generation, large-scale refactoring, and autonomous multi-step bug and test management. It introduces adaptive reasoning, meaning the system dynamically allocates more compute for complex problems and less for simpler ones, to improve efficiency and output quality. It also supports tool use (IDE-integrated workflows, version control, CI/CD pipelines) and offers higher fidelity in code review, debugging, and agentic behavior than general-purpose models. Alongside Max, there are lighter variants such as Codex-Mini for cost-sensitive or scale use-cases. The GPT-5.1-Codex family is available in developer previews, including via integrations like GitHub Copilot.
  • 31
    Command A Reasoning
    Command A Reasoning is Cohere’s most advanced enterprise-ready language model, engineered for high-stakes reasoning tasks and seamless integration into AI agent workflows. The model delivers exceptional reasoning performance, efficiency, and controllability, scaling across multi-GPU setups with support for up to 256,000-token context windows, ideal for handling long documents and multi-step agentic tasks. Organizations can fine-tune output precision and latency through a token budget, allowing a single model to flexibly serve both high-accuracy and high-throughput use cases. It powers Cohere’s North platform with leading benchmark performance and excels in multilingual contexts across 23 languages. Designed with enterprise safety in mind, it balances helpfulness with robust safeguards against harmful outputs. A lightweight deployment option allows running the model securely on a single H100 or A100 GPU, simplifying private, scalable use.
  • 32
    Grok 3 DeepSearch
    Grok 3 DeepSearch is an advanced model and research agent designed to improve reasoning and problem-solving abilities in AI, with a strong focus on deep search and iterative reasoning. Unlike traditional models that rely solely on pre-trained knowledge, Grok 3 DeepSearch can explore multiple avenues, test hypotheses, and correct errors in real-time by analyzing vast amounts of information and engaging in chain-of-thought processes. It is designed for tasks that require critical thinking, such as complex mathematical problems, coding challenges, and intricate academic inquiries. Grok 3 DeepSearch is a cutting-edge AI tool capable of providing accurate and thorough solutions by using its unique deep search capabilities, making it ideal for both STEM and creative fields.
  • 33
    gpt-oss-120b
    gpt-oss-120b is a reasoning model engineered for deep, transparent thinking, delivering full chain-of-thought explanations, adjustable reasoning depth, and structured outputs, while natively invoking tools like web search and Python execution via the API. Built to slot seamlessly into self-hosted or edge deployments, it eliminates dependence on proprietary infrastructure. Although it includes default safety guardrails, its open-weight architecture allows fine-tuning that could override built-in controls, so implementers are responsible for adding input filtering, output monitoring, and governance measures to achieve enterprise-grade security. As a community–driven model card rather than a managed service spec, it emphasizes transparency, customization, and the need for downstream safety practices.
  • 34
    Magistral

    Magistral

    Mistral AI

    Magistral is Mistral AI’s first reasoning‑focused language model family, released in two sizes: Magistral Small, a 24 B‑parameter open‑weight model under Apache 2.0 (downloadable on Hugging Face), and Magistral Medium, a more capable enterprise version available via Mistral’s API, Le Chat platform, and major cloud marketplaces. Built for domain‑specific, transparent, multilingual reasoning across tasks like math, physics, structured calculations, programmatic logic, decision trees, and rule‑based systems, Magistral produces chain‑of‑thought outputs in the user’s language that you can follow and verify. This launch marks a shift toward compact yet powerful transparent AI reasoning. Magistral Medium is currently available in preview on Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Magistral is ideal for general-purpose use requiring longer thought processing and better accuracy than with non-reasoning LLMs.
  • 35
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
  • 36
    gpt-oss-20b
    gpt-oss-20b is a 20-billion-parameter, text-only reasoning model released under the Apache 2.0 license and governed by OpenAI’s gpt-oss usage policy, built to enable seamless integration into custom AI workflows via the Responses API without reliance on proprietary infrastructure. Trained for robust instruction following, it supports adjustable reasoning effort, full chain-of-thought outputs, and native tool use (including web search and Python execution), producing structured, explainable answers. Developers must implement their own deployment safeguards, such as input filtering, output monitoring, and usage policies, to match the system-level protections of hosted offerings and mitigate risks from malicious or unintended behaviors. Its open-weight design makes it ideal for on-premises or edge deployments where control, customization, and transparency are paramount.
  • 37
    Phi-4-reasoning-plus
    Phi-4-reasoning-plus is a 14-billion parameter open-weight reasoning model that builds upon Phi-4-reasoning capabilities. It is further trained with reinforcement learning to utilize more inference-time compute, using 1.5x more tokens than Phi-4-reasoning, to deliver higher accuracy. Despite its significantly smaller size, Phi-4-reasoning-plus achieves better performance than OpenAI o1-mini and DeepSeek-R1 at most benchmarks, including mathematical reasoning and Ph.D. level science questions. It surpasses the full DeepSeek-R1 model (with 671 billion parameters) on the AIME 2025 test, the 2025 qualifier for the USA Math Olympiad. Phi-4-reasoning-plus is available on Azure AI Foundry and HuggingFace.
  • 38
    Gemini 2.0 Flash Thinking
    Gemini 2.0 Flash Thinking is an advanced AI model developed by Google DeepMind, designed to enhance reasoning capabilities by explicitly displaying its thought processes. This transparency allows the model to tackle complex problems more effectively and provides users with clear explanations of its decision-making steps. By showcasing its internal reasoning, Gemini 2.0 Flash Thinking not only improves performance but also offers greater explainability, making it a valuable tool for applications requiring deep understanding and trust in AI-driven solutions.
  • 39
    DBRX

    DBRX

    Databricks

    Today, we are excited to introduce DBRX, an open, general-purpose LLM created by Databricks. Across a range of standard benchmarks, DBRX sets a new state-of-the-art for established open LLMs. Moreover, it provides the open community and enterprises building their own LLMs with capabilities that were previously limited to closed model APIs; according to our measurements, it surpasses GPT-3.5, and it is competitive with Gemini 1.0 Pro. It is an especially capable code model, surpassing specialized models like CodeLLaMA-70B in programming, in addition to its strength as a general-purpose LLM. This state-of-the-art quality comes with marked improvements in training and inference performance. DBRX advances the state-of-the-art in efficiency among open models thanks to its fine-grained mixture-of-experts (MoE) architecture. Inference is up to 2x faster than LLaMA2-70B, and DBRX is about 40% of the size of Grok-1 in terms of both total and active parameter counts.
  • 40
    DeepSeek R2

    DeepSeek R2

    DeepSeek

    DeepSeek R2 is the anticipated successor to DeepSeek R1, a groundbreaking AI reasoning model launched in January 2025 by the Chinese AI startup DeepSeek. Building on R1’s success, which disrupted the AI industry with its cost-effective performance rivaling top-tier models like OpenAI’s o1, R2 promises a quantum leap in capabilities. It is expected to deliver exceptional speed and human-like reasoning, excelling in complex tasks such as advanced coding and high-level mathematical problem-solving. Leveraging DeepSeek’s innovative Mixture-of-Experts architecture and efficient training methods, R2 aims to outperform its predecessor while maintaining a low computational footprint, potentially expanding its reasoning abilities to languages beyond English.
  • 41
    GLM-4.6V

    GLM-4.6V

    Zhipu AI

    GLM-4.6V is a state-of-the-art open source multimodal vision-language model from the Z.ai (GLM-V) family designed for reasoning, perception, and action. It ships in two variants: a full-scale version (106B parameters) for cloud or high-performance clusters, and a lightweight “Flash” variant (9B) optimized for local deployment or low-latency use. GLM-4.6V supports a native context window of up to 128K tokens during training, enabling it to process very long documents or multimodal inputs. Crucially, it integrates native Function Calling, meaning the model can take images, screenshots, documents, or other visual media as input directly (without manual text conversion), reason about them, and trigger tool calls, bridging “visual perception” with “executable action.” This enables a wide spectrum of capabilities; interleaved image-and-text content generation (for example, combining document understanding with text summarization or generation of image-annotated responses).
  • 42
    NVIDIA Llama Nemotron
    ​NVIDIA Llama Nemotron is a family of advanced language models optimized for reasoning and a diverse set of agentic AI tasks. These models excel in graduate-level scientific reasoning, advanced mathematics, coding, instruction following, and tool calls. Designed for deployment across various platforms, from data centers to PCs, they offer the flexibility to toggle reasoning capabilities on or off, reducing inference costs when deep reasoning isn't required. The Llama Nemotron family includes models tailored for different deployment needs. Built upon Llama models and enhanced by NVIDIA through post-training, these models demonstrate improved accuracy, up to 20% over base models, and optimized inference speeds, achieving up to five times the performance of other leading open reasoning models. This efficiency enables handling more complex reasoning tasks, enhances decision-making capabilities, and reduces operational costs for enterprises. ​
  • 43
    Hunyuan-Vision-1.5
    HunyuanVision is a cutting-edge vision-language model developed by Tencent’s Hunyuan team. It uses a mamba-transformer hybrid architecture to deliver strong performance and efficient inference in multimodal reasoning tasks. The version Hunyuan-Vision-1.5 is designed for “thinking on images,” meaning it not only understands vision+language content, but can perform deeper reasoning that involves manipulating or reflecting on image inputs, such as cropping, zooming, pointing, box drawing, or drawing on the image to acquire additional knowledge. It supports a variety of vision tasks (image + video recognition, OCR, diagram understanding), visual reasoning, and even 3D spatial comprehension, all in a unified multilingual framework. The model is built to work seamlessly across languages and tasks and is intended to be open sourced (including checkpoints, technical report, inference support) to encourage the community to experiment and adopt.
  • 44
    Qwen3-VL

    Qwen3-VL

    Alibaba

    Qwen3-VL is the newest vision-language model in the Qwen family (by Alibaba Cloud), designed to fuse powerful text understanding/generation with advanced visual and video comprehension into one unified multimodal model. It accepts inputs in mixed modalities, text, images, and video, and handles long, interleaved contexts natively (up to 256 K tokens, with extensibility beyond). Qwen3-VL delivers major advances in spatial reasoning, visual perception, and multimodal reasoning; the model architecture incorporates several innovations such as Interleaved-MRoPE (for robust spatio-temporal positional encoding), DeepStack (to leverage multi-level features from its Vision Transformer backbone for refined image-text alignment), and text–timestamp alignment (for precise reasoning over video content and temporal events). These upgrades enable Qwen3-VL to interpret complex scenes, follow dynamic video sequences, read and reason about visual layouts.
  • 45
    Nomic Embed
    Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
  • 46
    K2 Think

    K2 Think

    Institute of Foundation Models

    K2 Think is an open source advanced reasoning model developed collaboratively by the Institute of Foundation Models at MBZUAI and G42. Despite only having 32 billion parameters, it delivers performance comparable to flagship models with many more parameters. It excels in mathematical reasoning, achieving top scores on competitive benchmarks such as AIME ’24/’25, HMMT ’25, and OMNI-Math-HARD. K2 Think is part of a suite of UAE-developed open models, alongside Jais (Arabic), NANDA (Hindi), and SHERKALA (Kazakh), and builds on the foundation laid by K2-65B, the fully reproducible open source foundation model released in 2024. The model is designed to be open, fast, and flexible, offering a web app interface for exploration, and with its efficiency in parameter positioning, it is a breakthrough in compact architectures for advanced AI reasoning.
  • 47
    Mistral NeMo

    Mistral NeMo

    Mistral AI

    Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.
  • 48
    GPT-5.1-Codex
    GPT-5.1-Codex is a specialized version of the GPT-5.1 model built for software engineering and agentic coding workflows. It is optimized for both interactive development sessions and long-horizon, autonomous execution of complex engineering tasks, such as building projects from scratch, developing features, debugging, performing large-scale refactoring, and code review. It supports tool-use, integrates naturally with developer environments, and adapts reasoning effort dynamically, moving quickly on simple tasks while spending more time on deep ones. The model is described as producing cleaner and higher-quality code outputs compared to general models, with closer adherence to developer instructions and fewer hallucinations. GPT-5.1-Codex is available via the Responses API route (rather than a standard chat API) and comes in variants including “mini” for cost-sensitive usage and “max” for the highest capability.
    Starting Price: $1.25 per input
  • 49
    GPT-5.1 Pro
    GPT-5.1 Pro is the highest-performance version of the GPT-5.1 model family, designed for research-grade reasoning and advanced analytical workloads. It delivers deeper, more structured thinking, making it ideal for complex problem-solving across coding, science, finance, law, and technical research. Unlike the Instant and Thinking versions, GPT-5.1 Pro is built to maintain accuracy under heavy cognitive load, producing clearer logic and more reliable multi-step reasoning. Pro users also gain access to extended context windows, allowing significantly longer inputs and deeper information processing. While it supports the full range of ChatGPT features, GPT-5.1 Pro is optimized for precision, rigor, and high-stakes tasks. It is available exclusively to ChatGPT Pro and Business customers.
  • 50
    DeepSeek R1

    DeepSeek R1

    DeepSeek

    DeepSeek-R1 is an advanced open-source reasoning model developed by DeepSeek, designed to rival OpenAI's Model o1. Accessible via web, app, and API, it excels in complex tasks such as mathematics and coding, demonstrating superior performance on benchmarks like the American Invitational Mathematics Examination (AIME) and MATH. DeepSeek-R1 employs a mixture of experts (MoE) architecture with 671 billion total parameters, activating 37 billion parameters per token, enabling efficient and accurate reasoning capabilities. This model is part of DeepSeek's commitment to advancing artificial general intelligence (AGI) through open-source innovation.