13 Integrations with Kilo Code

View a list of Kilo Code integrations and software that integrates with Kilo Code below. Compare the best Kilo Code integrations as well as features, ratings, user reviews, and pricing of software that integrates with Kilo Code. Here are the current Kilo Code integrations in 2025:

  • 1
    Google Cloud Platform
    Google Cloud is a cloud-based service that allows you to create anything from simple websites to complex applications for businesses of all sizes. New customers get $300 in free credits to run, test, and deploy workloads. All customers can use 25+ products for free, up to monthly usage limits. Use Google's core infrastructure, data analytics & machine learning. Secure and fully featured for all enterprises. Tap into big data to find answers faster and build better products. Grow from prototype to production to planet-scale, without having to think about capacity, reliability or performance. From virtual machines with proven price/performance advantages to a fully managed app development platform. Scalable, resilient, high performance object storage and databases for your applications. State-of-the-art software-defined networking products on Google’s private fiber network. Fully managed data warehousing, batch and stream processing, data exploration, Hadoop/Spark, and messaging.
    Leader badge
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Visual Studio Code
    Visual Studio Code (VS Code) is Microsoft’s open-source AI code editor designed to make coding faster, smarter, and more collaborative. It supports thousands of extensions and nearly every programming language, offering developers a lightweight yet powerful environment for writing, testing, and debugging code. With AI-powered features like GitHub Copilot, Next Edit Suggestions, and Agent Mode, VS Code helps you code with precision, automate complex tasks, and streamline development workflows. It integrates seamlessly with cloud services, remote repositories, and tools like Git, Docker, and Azure. The editor is fully customizable, allowing you to personalize your layout, color themes, and keyboard shortcuts. Whether coding locally or in the browser, VS Code delivers a complete development experience for individuals and teams alike.
    Leader badge
    Starting Price: Free
  • 3
    Claude Sonnet 3.7
    Claude Sonnet 3.7, developed by Anthropic, is a cutting-edge AI model that combines rapid response with deep reflective reasoning. This innovative model allows users to toggle between quick, efficient responses and more thoughtful, reflective answers, making it ideal for complex problem-solving. By allowing Claude to self-reflect before answering, it excels at tasks that require high-level reasoning and nuanced understanding. With its ability to engage in deeper thought processes, Claude Sonnet 3.7 enhances tasks such as coding, natural language processing, and critical thinking applications. Available across various platforms, it offers a powerful tool for professionals and organizations seeking a high-performance, adaptable AI.
    Starting Price: Free
  • 4
    Grok Code Fast 1
    Grok Code Fast 1 is a high-speed, economical reasoning model designed specifically for agentic coding workflows. Unlike traditional models that can feel slow in tool-based loops, it delivers near-instant responses, excelling in everyday software development tasks. Built from scratch with a programming-rich corpus and refined on real-world pull requests, it supports languages like TypeScript, Python, Java, Rust, C++, and Go. Developers can use it for everything from zero-to-one project building to precise bug fixes and codebase Q&A. With optimized inference and caching techniques, it achieves impressive responsiveness and a 90%+ cache hit rate when integrated with partners like GitHub Copilot, Cursor, and Cline. Offered at just $0.20 per million input tokens and $1.50 per million output tokens, Grok Code Fast 1 strikes a strong balance between speed, performance, and affordability.
    Starting Price: $0.20 per million input tokens
  • 5
    GLM-4.7

    GLM-4.7

    Zhipu AI

    GLM-4.7 is an advanced large language model designed to significantly elevate coding, reasoning, and agentic task performance. It delivers major improvements over GLM-4.6 in multilingual coding, terminal-based tasks, and real-world software engineering benchmarks such as SWE-bench and Terminal Bench. GLM-4.7 supports “thinking before acting,” enabling more stable, accurate, and controllable behavior in complex coding and agent workflows. The model also introduces strong gains in UI and frontend generation, producing cleaner webpages, better layouts, and more polished slides. Enhanced tool-using capabilities allow GLM-4.7 to perform more effectively in web browsing, automation, and agent benchmarks. Its reasoning and mathematical performance has improved substantially, showing strong results on advanced evaluation suites. GLM-4.7 is available via Z.ai, API platforms, coding agents, and local deployment for flexible adoption.
    Starting Price: Free
  • 6
    GLM-4.6

    GLM-4.6

    Zhipu AI

    GLM-4.6 advances upon its predecessor with stronger reasoning, coding, and agentic capabilities: it demonstrates clear improvements in inferential performance, supports tool use during inference, and more effectively integrates into agent frameworks. In benchmark tests spanning reasoning, coding, and agents, GLM-4.6 outperforms GLM-4.5 and shows competitive strength against models such as DeepSeek-V3.2-Exp and Claude Sonnet 4, though it still trails Claude Sonnet 4.5 in pure coding performance. In real-world tests using an extended “CC-Bench” suite across front-end development, tool building, data analysis, and algorithmic tasks, GLM-4.6 beats GLM-4.5 and approaches parity with Claude Sonnet 4, winning ~48.6% of head-to-head comparisons, while also achieving ~15% better token efficiency. GLM-4.6 is available via the Z.ai API, and developers can integrate it as an LLM backend or agent core using the platform’s API.
    Starting Price: Free
  • 7
    MiniMax M2

    MiniMax M2

    MiniMax

    MiniMax M2 is an open source foundation model built specifically for agentic applications and coding workflows, striking a new balance of performance, speed, and cost. It excels in end-to-end development scenarios, handling programming, tool-calling, and complex, long-chain workflows with capabilities such as Python integration, while delivering inference speeds of around 100 tokens per second and offering API pricing at just ~8% of the cost of comparable proprietary models. The model supports “Lightning Mode” for high-speed, lightweight agent tasks, and “Pro Mode” for in-depth full-stack development, report generation, and web-based tool orchestration; its weights are fully open source and available for local deployment with vLLM or SGLang. MiniMax M2 positions itself as a production-ready model that enables agents to complete independent tasks, such as data analysis, programming, tool orchestration, and large-scale multi-step logic at real organizational scale.
    Starting Price: $0.30 per million input tokens
  • 8
    Devstral 2

    Devstral 2

    Mistral AI

    Devstral 2 is a next-generation, open source agentic AI model tailored for software engineering: it doesn’t just suggest code snippets, it understands and acts across entire codebases, enabling multi-file edits, bug fixes, refactoring, dependency resolution, and context-aware code generation. The Devstral 2 family includes a large 123-billion-parameter model as well as a smaller 24-billion-parameter variant (“Devstral Small 2”), giving teams flexibility; the larger model excels in heavy-duty coding tasks requiring deep context, while the smaller one can run on more modest hardware. With a vast context window of up to 256 K tokens, Devstral 2 can reason across extensive repositories, track project history, and maintain a consistent understanding of lengthy files, an advantage for complex, real-world projects. The CLI tracks project metadata, Git statuses, and directory structure to give the model context, making “vibe-coding” more powerful.
    Starting Price: Free
  • 9
    Devstral Small 2
    Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.
    Starting Price: Free
  • 10
    GLM-4.6V

    GLM-4.6V

    Zhipu AI

    GLM-4.6V is a state-of-the-art open source multimodal vision-language model from the Z.ai (GLM-V) family designed for reasoning, perception, and action. It ships in two variants: a full-scale version (106B parameters) for cloud or high-performance clusters, and a lightweight “Flash” variant (9B) optimized for local deployment or low-latency use. GLM-4.6V supports a native context window of up to 128K tokens during training, enabling it to process very long documents or multimodal inputs. Crucially, it integrates native Function Calling, meaning the model can take images, screenshots, documents, or other visual media as input directly (without manual text conversion), reason about them, and trigger tool calls, bridging “visual perception” with “executable action.” This enables a wide spectrum of capabilities; interleaved image-and-text content generation (for example, combining document understanding with text summarization or generation of image-annotated responses).
    Starting Price: Free
  • 11
    GLM-4.1V

    GLM-4.1V

    Zhipu AI

    GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.
    Starting Price: Free
  • 12
    GLM-4.5V-Flash
    GLM-4.5V-Flash is an open source vision-language model, designed to bring strong multimodal capabilities into a lightweight, deployable package. It supports image, video, document, and GUI inputs, enabling tasks such as scene understanding, chart and document parsing, screen reading, and multi-image analysis. Compared to larger models in the series, GLM-4.5V-Flash offers a compact footprint while retaining core VLM capabilities like visual reasoning, video understanding, GUI task handling, and complex document parsing. It can serve in “GUI agent” workflows, meaning it can interpret screenshots or desktop captures, recognize icons or UI elements, and assist with automated desktop or web-based tasks. Although it forgoes some of the largest-model performance gains, GLM-4.5V-Flash remains versatile for real-world multimodal tasks where efficiency, lower resource usage, and broad modality support are prioritized.
    Starting Price: Free
  • 13
    GLM-4.5V

    GLM-4.5V

    Zhipu AI

    GLM-4.5V builds on the GLM-4.5-Air foundation, using a Mixture-of-Experts (MoE) architecture with 106 billion total parameters and 12 billion activation parameters. It achieves state-of-the-art performance among open-source VLMs of similar scale across 42 public benchmarks, excelling in image, video, document, and GUI-based tasks. It supports a broad range of multimodal capabilities, including image reasoning (scene understanding, spatial recognition, multi-image analysis), video understanding (segmentation, event recognition), complex chart and long-document parsing, GUI-agent workflows (screen reading, icon recognition, desktop automation), and precise visual grounding (e.g., locating objects and returning bounding boxes). GLM-4.5V also introduces a “Thinking Mode” switch, allowing users to choose between fast responses or deeper reasoning when needed.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next