Alternatives to IBM Streams

Compare IBM Streams alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to IBM Streams in 2024. Compare features, ratings, user reviews, pricing, and more from IBM Streams competitors and alternatives in order to make an informed decision for your business.

  • 1
    StarTree

    StarTree

    StarTree

    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready
    Compare vs. IBM Streams View Software
    Visit Website
  • 2
    Striim

    Striim

    Striim

    Data integration for your hybrid cloud. Modern, reliable data integration across your private and public cloud. All in real-time with change data capture and data streams. Built by the executive & technical team from GoldenGate Software, Striim brings decades of experience in mission-critical enterprise workloads. Striim scales out as a distributed platform in your environment or in the cloud. Scalability is fully configurable by your team. Striim is fully secure with HIPAA and GDPR compliance. Built ground up for modern enterprise workloads in the cloud or on-premise. Drag and drop to create data flows between your sources and targets. Process, enrich, and analyze your streaming data with real-time SQL queries.
  • 3
    Azure Stream Analytics
    Discover Azure Stream Analytics, the easy-to-use, real-time analytics service that is designed for mission-critical workloads. Build an end-to-end serverless streaming pipeline with just a few clicks. Go from zero to production in minutes using SQL—easily extensible with custom code and built-in machine learning capabilities for more advanced scenarios. Run your most demanding workloads with the confidence of a financially backed SLA.
  • 4
    Esper Enterprise Edition
    Esper Enterprise Edition is a distributable platform for linear and elastic horizontal scalability and fault-tolerant event processing. EPL editor and debugger; Hot deployment; Detailed metric and memory use reporting with break-down and summary per EPL. Data Push for multi-tier CEP-to-Browser delivery; Management of Logical and Physical Subscribers and Subscriptions. Web-based user interface for managing all aspects of multiple distributed engine instances with JavaScript and HTML 5. Composable, configurable and interactive displays of distributed event streams or series; Charts, Gauges, Timelines, Grids. JDBC-compliant client and server endpoints for interoperability. Esper Enterprise Edition is a closed-source commercial product by EsperTech. The source code is made available to support customers only. Esper Enterprise Edition is a distributable platform for linear and elastic horizontal scalability and fault-tolerant event processing.
  • 5
    Kinetica

    Kinetica

    Kinetica

    A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale.
  • 6
    Confluent

    Confluent

    Confluent

    Infinite retention for Apache Kafka® with Confluent. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming enables you to innovate and win - by being both real-time and highly-scalable. Ever wonder how your rideshare app analyzes massive amounts of data from multiple sources to calculate real-time ETA? Ever wonder how your credit card company analyzes millions of credit card transactions across the globe and sends fraud notifications in real-time? The answer is event streaming. Move to microservices. Enable your hybrid strategy through a persistent bridge to cloud. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. The list is endless.
  • 7
    Cloudera DataFlow
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi ​​that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes.
  • 8
    Cumulocity IoT

    Cumulocity IoT

    Software AG

    Cumulocity IoT is the #1 low-code, self-service IoT platform—the only one that comes pre-integrated with the tools you need for fast results: device connectivity and management, application enablement and integration, as well as streaming and predictive analytics. Free your business from proprietary technology stacks. Because you’ll be using the only completely open IoT platform, you can connect any “thing” today and tomorrow. Bring your own hardware and tools, and pick the components that best fit. Get up and running on the IoT in minutes. Connect a device and view its data. Create a real-time interactive dashboard. Define rules to monitor and act on events. Do all of this without calling on IT or writing any code! Easily integrate new IoT data with the core enterprise systems, applications and processes that have run your business for years—again, without coding—for a fluid flow of data. You’ll have more context to make better decisions.
  • 9
    Informatica Data Engineering Streaming
    AI-powered Informatica Data Engineering Streaming enables data engineers to ingest, process, and analyze real-time streaming data for actionable insights. Advanced serverless deployment option​ with integrated metering dashboard cuts admin overhead. Rapidly build intelligent data pipelines with CLAIRE®-powered automation, including automatic change data capture (CDC). Ingest thousands of databases and millions of files, and streaming events. Efficiently ingest databases, files, and streaming data for real-time data replication and streaming analytics. Find and inventory all data assets throughout your organization. Intelligently discover and prepare trusted data for advanced analytics and AI/ML projects.
  • 10
    Hitachi Streaming Data Platform
    Hitachi is a software company based in Japan and offers a software product called Hitachi Streaming Data Platform. Hitachi Streaming Data Platform is Real-Time data streaming software, and includes features such as data enrichment, data wrangling / data prep, multiple data source support, process automation, real-time analysis / reporting, and visualization dashboards. Hitachi Streaming Data Platform offers training via documentation. Hitachi Streaming Data Platform offers phone support support. Some alternative products to Hitachi Streaming Data Platform include DeltaStream, Informatica Data Engineering Streaming, and Google Cloud Dataflow.
  • 11
    SQLstream

    SQLstream

    Guavus, a Thales company

    SQLstream ranks #1 for IoT stream processing & analytics (ABI Research). Used by Verizon, Walmart, Cisco, & Amazon, our technology powers applications across data centers, the cloud, & the edge. Thanks to sub-ms latency, SQLstream enables live dashboards, time-critical alerts, & real-time action. Smart cities can optimize traffic light timing or reroute ambulances & fire trucks. Security systems can shut down hackers & fraudsters right away. AI / ML models, trained by streaming sensor data, can predict equipment failures. With lightning performance, up to 13M rows / sec / CPU core, companies have drastically reduced their footprint & cost. Our efficient, in-memory processing permits operations at the edge that are otherwise impossible. Acquire, prepare, analyze, & act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code GUI dev environment. Export SQL scripts & deploy with the flexibility of Kubernetes.
  • 12
    Oracle Stream Analytics
    Oracle Stream Analytics allows users to process and analyze large scale real-time information by using sophisticated correlation patterns, enrichment, and machine learning. It offers real-time actionable business insight on streaming data and automates action to drive today’s agile businesses. Visual GEOProcessing with GEOFence relationship spatial analytics. New Expressive Patterns Library, including Spatial, Statistical, General industry and Anomaly detection, streaming machine learning. Abstracted visual façade to interrogate live real time streaming data and perform intuitive in-memory real time business analytics.
  • 13
    Vitria VIA Analytics Platform
    VIA provides visibility across data and organizational silos enabling operational effectiveness for many industries. Your team will isolate problems faster, automate response when possible and prevent the problems most likely to impact service and your customers’ experience. Enabled by its action-oriented analytic value chain and customer-centric approach, VIA reveals and automates what to do, then prioritizes based on customer impact so you can take decisions and act with confidence to improve business outcomes. VIA Solution Templates accelerate deployment and adaptation of the Platform to meet your unique business requirements.
  • 14
    SAS Event Stream Processing
    Streaming data from operations, transactions, sensors and IoT devices is valuable – when it's well-understood. Event stream processing from SAS includes streaming data quality and analytics – and a vast array of SAS and open source machine learning and high-frequency analytics for connecting, deciphering, cleansing and understanding streaming data – in one solution. No matter how fast your data moves, how much data you have, or how many data sources you’re pulling from, it’s all under your control via a single, intuitive interface. You can define patterns and address scenarios from all aspects of your business, giving you the power to stay agile and tackle issues as they arise.
  • 15
    Amazon Kinesis
    Easily collect, process, and analyze video and data streams in real time. Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. Amazon Kinesis offers key capabilities to cost-effectively process streaming data at any scale, along with the flexibility to choose the tools that best suit the requirements of your application. With Amazon Kinesis, you can ingest real-time data such as video, audio, application logs, website clickstreams, and IoT telemetry data for machine learning, analytics, and other applications. Amazon Kinesis enables you to process and analyze data as it arrives and respond instantly instead of having to wait until all your data is collected before the processing can begin. Amazon Kinesis enables you to ingest, buffer, and process streaming data in real-time, so you can derive insights in seconds or minutes instead of hours or days.
  • 16
    Oracle Cloud Infrastructure Streaming
    Streaming service is a real-time, serverless, Apache Kafka-compatible event streaming platform for developers and data scientists. Streaming is tightly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. The service also provides out-of-the-box integrations for hundreds of third-party products across categories such as DevOps, databases, big data, and SaaS applications. Data engineers can easily set up and operate big data pipelines. Oracle handles all infrastructure and platform management for event streaming, including provisioning, scaling, and security patching. With the help of consumer groups, Streaming can provide state management for thousands of consumers. This helps developers easily build applications at scale.
  • 17
    Materialize

    Materialize

    Materialize

    Materialize is a reactive database that delivers incremental view updates. We help developers easily build with streaming data using standard SQL. Materialize can connect to many different external sources of data without pre-processing. Connect directly to streaming sources like Kafka, Postgres databases, CDC, or historical sources of data like files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are maintained and continually updated as new data streams in. With incrementally-updated views, developers can easily build data visualizations or real-time applications. Building with streaming data can be as simple as writing a few lines of SQL.
    Starting Price: $0.98 per hour
  • 18
    Apache Flink

    Apache Flink

    Apache Software Foundation

    Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Any kind of data is produced as a stream of events. Credit card transactions, sensor measurements, machine logs, or user interactions on a website or mobile application, all of these data are generated as a stream. Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms and data structures that are specifically designed for fixed sized data sets, yielding excellent performance. Flink is designed to work well each of the previously listed resource managers.
  • 19
    Rockset

    Rockset

    Rockset

    Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.
  • 20
    DeltaStream

    DeltaStream

    DeltaStream

    DeltaStream is a unified serverless stream processing platform that integrates with streaming storage services. Think about it as the compute layer on top of your streaming storage. It provides functionalities of streaming analytics(Stream processing) and streaming databases along with additional features to provide a complete platform to manage, process, secure and share streaming data. DeltaStream provides a SQL based interface where you can easily create stream processing applications such as streaming pipelines, materialized views, microservices and many more. It has a pluggable processing engine and currently uses Apache Flink as its primary stream processing engine. DeltaStream is more than just a query processing layer on top of Kafka or Kinesis. It brings relational database concepts to the data streaming world, including namespacing and role based access control enabling you to securely access, process and share your streaming data regardless of where they are stored.
  • 21
    Gathr

    Gathr

    Gathr

    The only all-in-one data pipeline platform. Built ground-up for a cloud-first world, Gathr is the only platform to handle all your data integration and engineering needs - ingestion, ETL, ELT, CDC, streaming analytics, data preparation, machine learning, advanced analytics and more. With Gathr, anyone can build and deploy pipelines in minutes, irrespective of skill levels. Create Ingestion pipelines in minutes, not weeks. Ingest data from any source, deliver to any destination. Build applications quickly with a wizard-based approach. Replicate data in real-time using a templatized CDC app. Native integration for all sources and targets. Best-in-class capabilities with everything you need to succeed today and tomorrow. Choose between free, pay-per-use or customize as per your requirements.
  • 22
    WarpStream

    WarpStream

    WarpStream

    WarpStream is an Apache Kafka-compatible data streaming platform built directly on top of object storage, with no inter-AZ networking costs, no disks to manage, and infinitely scalable, all within your VPC. WarpStream is deployed as a stateless and auto-scaling agent binary in your VPC with no local disks to manage. Agents stream data directly to and from object storage with no buffering on local disks and no data tiering. Create new “virtual clusters” in our control plane instantly. Support different environments, teams, or projects without managing any dedicated infrastructure. WarpStream is protocol compatible with Apache Kafka, so you can keep using all your favorite tools and software. No need to rewrite your application or use a proprietary SDK. Just change the URL in your favorite Kafka client library and start streaming. Never again have to choose between reliability and your budget.
    Starting Price: $2,987 per month
  • 23
    Google Cloud Dataflow
    Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization.
  • 24
    Redpanda

    Redpanda

    Redpanda Data

    Breakthrough data streaming capabilities that let you deliver customer experiences never before possible. Kafka API and ecosystem are compatible. Redpanda BulletPredictable low latencies with zero data loss. Redpanda BulletUpto 10x faster than Kafka. Redpanda BulletEnterprise-grade support and hotfixes. Redpanda BulletAutomated backups to S3/GCS. Redpanda Bullet100% freedom from routine Kafka operations. Redpanda BulletSupport for AWS and GCP. Redpanda was designed from the ground up to be easily installed to get streaming up and running quickly. After you see its power, put Redpanda to the test in production. Use the more advanced Redpanda features. We manage provisioning, monitoring, and upgrades. Without any access to your cloud credentials. Sensitive data never leaves your environment. Provisioned, operated, and maintained for you. Configurable instance types. Expand cluster as your needs grow.
  • 25
    Insigna

    Insigna

    Insigna

    The comprehensive solution for data management and real-time analytics.
  • 26
    Timeplus

    Timeplus

    Timeplus

    Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.
    Starting Price: $199 per month
  • 27
    ksqlDB

    ksqlDB

    Confluent

    Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation.
  • 28
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 29
    Embiot

    Embiot

    Telchemy

    Embiot® is a compact, high performance IoT analytics software agent for IoT gateway and smart sensor applications. This edge computing application is small enough to integrate directly into devices, smart sensors and gateways, but powerful enough to calculate complex analytics from large amounts of raw data at high speed. Internally, Embiot uses a stream processing model to enable it to handle sensor data that arrives at different rates and out of order. It has a simple intuitive configuration language and a rich set of math, stats and AI functions making it fast and easy to solve your analytics problems. Embiot supports a range of input methods including MODBUS, MQTT, REST/XML, REST/JSON, Name/Value and CSV. Embiot is able to send output reports to multiple destinations concurrently in REST, MQTT and custom text formats. For security, Embiot supports TLS selectively on any input or output stream, HTTP and MQTT authentication.
  • 30
    KX Streaming Analytics
    KX Streaming Analytics provides the ability to ingest, store, process, and analyze historic and time series data to make analytics, insights, and visualizations instantly available. To help ensure your applications and users are productive quickly, the platform provides the full lifecycle of data services, including query processing, tiering, migration, archiving, data protection, and scaling. Our advanced analytics and visualization tools, used widely across finance and industry, enable you to define and perform queries, calculations, aggregations, machine learning and AI on any streaming and historical data. Deployable across multiple hardware environments, data can come from real-time business events and high-volume sources including sensors, clickstreams, radio-frequency identification, GPS systems, social networking sites, and mobile devices.
  • 31
    BlackLynx Accelerated Analytics
    BlackLynx’s accelerators deliver analytics power where it’s needed and without requiring specialized skills. No matter what your analytics ecosystem includes, you can power data-driven business with powerful, easy-to-use heterogeneous computing. BlackStack software and electronics integration dramatically accelerate processing speeds for sensors deployed within ground, naval, space-based, or airborne assets. Our software enables customers to accelerate relevant AI/ML algorithms or other computing functions with a focus in the areas of real-time sensor processing; including signal detection, video sensors, missiles, radar, thermal, and other object detection capabilities. BlackStack software dramatically accelerates processing speeds for real-time data analytics. We empower our customers to probe enterprise-scale levels of unstructured and fast-changing data to collect, filter, and organize vast amounts of intelligence information or cybersecurity forensic data.
  • 32
    IBM Event Streams
    Built on open-source Apache Kafka, IBM® Event Streams is an event-streaming platform that helps you build smart apps that can react to events as they happen. Event Streams is based on years of IBM operational expertise gained from running Apache Kafka event streams for enterprises. This makes Event Streams ideal for mission-critical workloads. With connectors to a wide range of core systems and a scalable REST API, you can extend the reach of your existing enterprise assets. Rich security and geo-replication aids disaster recovery. Take advantage of IBM productivity tools and use the CLI to ensure best practices. Replicate data between Event Streams deployments in a disaster-recovery situation.
  • 33
    Apama

    Apama

    Apama

    Apama Streaming Analytics allows organizations to analyze and act on IoT and fast-moving data in real-time, responding to events intelligently the moment they happen. Apama Community Edition is a freemium version of Apama by Software AG that can be used to learn about, develop and put streaming analytics applications into production. The Software AG Data & Analytics Platform is an end-toend, modular and integrated set of world-class capabilities optimized for high-speed data management and analytics on real-time data and offering out-of-the-box integration and connectivity to all key enterprise data sources. Choose the capabilities you need: streaming, predictive and visual analytics along with messaging for easy integration with other enterprise apps and an in-memory data store for extremely fast access. Integrate historical and other data for comparison—ideal when building models or enriching customer and other vital data.
  • 34
    Arroyo

    Arroyo

    Arroyo

    Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
  • 35
    TIBCO Streaming
    Analyze, continuously query, and act on IoT and other streaming data at lightning fast speeds. Take real-time operations and analytics to the next level with intelligent applications that deploy quickly for taking action based on new decisions and models, all without extra overhead. TIBCO® Streaming software is enterprise-grade, cloud-ready streaming analytics for quickly building real-time applications at a fraction of the cost and risk of alternatives.
  • 36
    Digital Twin Streaming Service
    ScaleOut Digital Twin Streaming Service™ Easily build and deploy real-time digital twins for streaming analytics Connect to many data sources with Azure & AWS IoT hubs, Kafka, and more Maximize situational awareness with live, aggregate analytics. Introducing a breakthrough cloud service that simultaneously tracks telemetry from millions of data sources with “real-time” digital twins — enabling immediate, deep introspection with state-tracking and highly targeted, real-time feedback for thousands of devices. A powerful UI simplifies deployment and displays aggregate analytics in real time to maximize situational awareness. Ideal for a wide range of applications, including the Internet of Things (IoT), real-time intelligent monitoring, logistics, and financial services. Simplified pricing makes getting started fast and easy. Combined with the ScaleOut Digital Twin Builder software toolkit, the ScaleOut Digital Twin Streaming Service enables the next generation in stream processing.
  • 37
    Axual

    Axual

    Axual

    Axual is Kafka-as-a-Service for DevOps teams. Empower your team to unlock insights and drive decisions with our intuitive Kafka platform. Axual offers the ultimate solution for enterprises looking to seamlessly integrate data streaming into their core IT infrastructure. Our all-in-one Kafka platform is designed to eliminate the need for extensive technical knowledge or skills, and provides a ready-made solution that delivers all the benefits of event streaming without the hassle. The Axual Platform is a all-in-one solution, designed to help you simplify and enhance the deployment, management, and utilization of real-time data streaming with Apache Kafka. By providing an array of features that cater to the diverse needs of modern enterprises, the Axual Platform enables organizations to harness the full potential of data streaming while minimizing complexity and operational overhead.
  • 38
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
  • 39
    Astra Streaming
    Responsive applications keep users engaged and developers inspired. Rise to meet these ever-increasing expectations with the DataStax Astra Streaming service platform. DataStax Astra Streaming is a cloud-native messaging and event streaming platform powered by Apache Pulsar. Astra Streaming allows you to build streaming applications on top of an elastically scalable, multi-cloud messaging and event streaming platform. Astra Streaming is powered by Apache Pulsar, the next-generation event streaming platform which provides a unified solution for streaming, queuing, pub/sub, and stream processing. Astra Streaming is a natural complement to Astra DB. Using Astra Streaming, existing Astra DB users can easily build real-time data pipelines into and out of their Astra DB instances. With Astra Streaming, avoid vendor lock-in and deploy on any of the major public clouds (AWS, GCP, Azure) compatible with open-source Apache Pulsar.
  • 40
    Yandex Data Streams
    Simplifies data exchange between components in microservice architectures. When used as a transport for microservices, it simplifies integration, increases reliability, and improves scaling. Read and write data in near real-time. Set data throughput and storage times to meet your needs. Enjoy granular configuration of the resources for processing data streams, from small streams of 100 KB/s to streams of 100 MB/s. Deliver a single stream to multiple targets with different retention policies using Yandex Data Transfer. Data is automatically replicated across multiple geographically distributed availability zones. Once created, you can manage data streams centrally in the management console or using the API. Yandex Data Streams can continuously collect data from sources like website browsing histories, application and system logs, and social media feeds. Yandex Data Streams is capable of continuously collecting data from sources such as website browsing histories, application logs, etc.
    Starting Price: $0.086400 per GB
  • 41
    HyperCube

    HyperCube

    BearingPoint

    Whatever your business need, discover hidden insights quickly and easily using HyperCube, the platform designed for the way data scientists work. Put your business data to work. Unlock understanding, discover unrealized opportunities, generate predictions and avoid risks before they happen. HyperCube takes huge volumes of data and turns it into actionable insights. Whether a beginner in analytics or a machine learning expert, HyperCube is designed with you in mind. It is the Swiss Army knife of data science, combining proprietary and open source code to deliver a wide range of data analysis features straight out of the box or as business apps, customized just for you. We are constantly updating and perfecting our technology so we can deliver the most innovative, intuitive and adaptable results Choose from apps, data-as-a-services (DaaS) and vertical market solutions.
  • 42
    Apache Storm

    Apache Storm

    Apache Software Foundation

    Apache Storm is a free and open source distributed realtime computation system. Apache Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Apache Storm is simple, can be used with any programming language, and is a lot of fun to use! Apache Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Apache Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate. Apache Storm integrates with the queueing and database technologies you already use. An Apache Storm topology consumes streams of data and processes those streams in arbitrarily complex ways, repartitioning the streams between each stage of the computation however needed. Read more in the tutorial.
  • 43
    StreamSets

    StreamSets

    StreamSets

    StreamSets DataOps Platform. The data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps, and power modern analytics and hybrid integration. Only StreamSets provides a single design experience for all design patterns for 10x greater developer productivity; smart data pipelines that are resilient to change for 80% less breakages; and a single pane of glass for managing and monitoring all pipelines across hybrid and cloud architectures to eliminate blind spots and control gaps. With StreamSets, you can deliver the continuous data that drives the connected enterprise.
    Starting Price: $1000 per month
  • 44
    Baidu AI Cloud Stream Computing
    Baidu Stream Computing (BSC) provides real-time streaming data processing capacity with low delay, high throughput and high accuracy. It is fully compatible with Spark SQL; and can realize the logic data processing of complicated businesses through SQL statement, which is easy to use; provides users with full life cycle management for the streaming-oriented computing jobs. Integrate deeply with multiple storage products of Baidu AI Cloud as the upstream and downstream of stream computing, including Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, SCS and others. Provide a comprehensive job monitoring indicator, and the user can view the monitoring indicators of the job and set the alarm rules to protect the job.
  • 45
    Decodable

    Decodable

    Decodable

    No more low level code and stitching together complex systems. Build and deploy pipelines in minutes with SQL. A data engineering service that makes it easy for developers and data engineers to build and deploy real-time data pipelines for data-driven applications. Pre-built connectors for messaging systems, storage systems, and database engines make it easy to connect and discover available data. For each connection you make, you get a stream to or from the system. With Decodable you can build your pipelines with SQL. Pipelines use streams to send data to, or receive data from, your connections. You can also use streams to connect pipelines together to handle the most complex processing tasks. Observe your pipelines to ensure data keeps flowing. Create curated streams for other teams. Define retention policies on streams to avoid data loss during external system failures. Real-time health and performance metrics let you know everything’s working.
    Starting Price: $0.20 per task per hour
  • 46
    Apache Beam

    Apache Beam

    Apache Software Foundation

    The easiest way to do batch and streaming data processing. Write once, run anywhere data processing for mission-critical production workloads. Beam reads your data from a diverse set of supported sources, no matter if it’s on-prem or in the cloud. Beam executes your business logic for both batch and streaming use cases. Beam writes the results of your data processing logic to the most popular data sinks in the industry. A simplified, single programming model for both batch and streaming use cases for every member of your data and application teams. Apache Beam is extensible, with projects such as TensorFlow Extended and Apache Hop built on top of Apache Beam. Execute pipelines on multiple execution environments (runners), providing flexibility and avoiding lock-in. Open, community-based development and support to help evolve your application and meet the needs of your specific use cases.
  • 47
    Xeotek

    Xeotek

    Xeotek

    Xeotek helps companies develop and explore their data applications and streams faster with Xeotek's powerful desktop and web application. Xeotek KaDeck was designed to be used by developers, operations, and business users alike. Because business users, developers, and operations jointly gain insight into data and processes via KaDeck, the whole team benefits: fewer misunderstandings, less rework, more transparency. Xeotek KaDeck puts you in control of your data streams. Save hours of work by gaining insights at the data and application level in projects or day-to-day operations. Export, filter, transform and manage data streams in KaDeck with ease. Run JavaScript (NodeV4) code, transform & generate test data, view & change consumer offsets, manage your streams or topics, Kafka Connect instances, schema registry, and ACLs – all from one convenient user interface.
  • 48
    Nussknacker

    Nussknacker

    Nussknacker

    Nussknacker is a low-code visual tool for domain experts to define and run real-time decisioning algorithms instead of implementing them in the code. It serves where real-time actions on data have to be made: real-time marketing, fraud detection, Internet of Things, Customer 360, and Machine Learning inferring. An essential part of Nussknacker is a visual design tool for decision algorithms. It allows not-so-technical users – analysts or business people – to define decision logic in an imperative, easy-to-follow, and understandable way. Once authored, with a click of a button, scenarios are deployed for execution. And can be changed and redeployed anytime there’s a need. Nussknacker supports two processing modes: streaming and request-response. In streaming mode, it uses Kafka as its primary interface. It supports both stateful and stateless processing.
  • 49
    Leo

    Leo

    Leo

    Turn your data into a realtime stream, making it immediately available and ready to use. Leo reduces the complexity of event sourcing by making it easy to create, visualize, monitor, and maintain your data flows. Once you unlock your data, you are no longer limited by the constraints of your legacy systems. Dramatically reduced dev time keeps your developers and stakeholders happy. Adopt microservice architectures to continuously innovate and improve agility. In reality, success with microservices is all about data. An organization must invest in a reliable and repeatable data backbone to make microservices a reality. Implement full-fledged search in your custom app. With data flowing, adding and maintaining a search database will not be a burden.
    Starting Price: $251 per month
  • 50
    Amazon MSK
    Amazon MSK is a fully managed service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open-source platform for building real-time streaming data pipelines and applications. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications. Apache Kafka clusters are challenging to setup, scale, and manage in production. When you run Apache Kafka on your own, you need to provision servers, configure Apache Kafka manually, replace servers when they fail, orchestrate server patches and upgrades, architect the cluster for high availability, ensure data is durably stored and secured, setup monitoring and alarms, and carefully plan scaling events to support load changes.
    Starting Price: $0.0543 per hour