BigLake
BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
Learn more
TimescaleDB
TimescaleDB is the leading time-series database built on PostgreSQL, designed to handle massive volumes of real-time data efficiently. It enables organizations to store, analyze, and query time-series data — such as IoT sensor data, financial transactions, or event logs — using standard SQL. With hypertables, TimescaleDB automatically partitions data by time and ID for fast ingestion and predictable query performance. Its compression engine reduces storage costs by up to 95%, while continuous aggregates make real-time dashboards instantly responsive. Fully compatible with PostgreSQL, it integrates seamlessly with existing tools and applications. TimescaleDB combines the simplicity of Postgres with the scalability and speed of a specialized analytical system.
Learn more
Apache DataFusion
Apache DataFusion is an extensible, high-performance query engine written in Rust that utilizes Apache Arrow as its in-memory format. Designed for developers building data-centric systems such as databases, data frames, machine learning, and streaming applications, DataFusion offers SQL and DataFrame APIs, a vectorized, multi-threaded, streaming execution engine, and support for partitioned data sources. It natively supports formats like CSV, Parquet, JSON, and Avro, and allows for seamless integration with object stores including AWS S3, Azure Blob Storage, and Google Cloud Storage. The engine features a comprehensive query planner, a state-of-the-art optimizer with capabilities like expression coercion and simplification, projection and filter pushdown, sort and distribution-aware optimizations, and automatic join reordering. DataFusion is highly customizable, enabling the addition of user-defined scalar, aggregate, and window functions, custom data sources, query languages, etc.
Learn more
Apache Phoenix
Apache Phoenix enables OLTP and operational analytics in Hadoop for low-latency applications by combining the best of both worlds. The power of standard SQL and JDBC APIs with full ACID transaction capabilities and the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by leveraging HBase as its backing store. Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and Map Reduce. Become the trusted data platform for OLTP and operational analytics for Hadoop through well-defined, industry-standard APIs. Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with coprocessors and custom filters, results in performance on the order of milliseconds for small queries, or seconds for tens of millions of rows.
Learn more