Alternatives to Hermes 3

Compare Hermes 3 alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Hermes 3 in 2024. Compare features, ratings, user reviews, pricing, and more from Hermes 3 competitors and alternatives in order to make an informed decision for your business.

  • 1
    FreeWilly

    FreeWilly

    Stability AI

    Stability AI and its CarperAI lab are proud to announce FreeWilly1 and its successor FreeWilly2, two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. FreeWilly1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, FreeWilly2 leverages the LLaMA 2 70B foundation model to reach a performance that compares favorably with GPT-3.5 for some tasks. The training for the FreeWilly models was directly inspired by the methodology pioneered by Microsoft in its paper: "Orca: Progressive Learning from Complex Explanation Traces of GPT-4.” While our data generation process is similar, we differ in our data sources.
    Starting Price: Free
  • 2
    Llama 2
    The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
    Starting Price: Free
  • 3
    PygmalionAI

    PygmalionAI

    PygmalionAI

    PygmalionAI is a community dedicated to creating open-source projects based on EleutherAI's GPT-J 6B and Meta's LLaMA models. In simple terms, Pygmalion makes AI fine-tuned for chatting and roleplaying purposes. The current actively supported Pygmalion AI model is the 7B variant, based on Meta AI's LLaMA model. With only 18GB (or less) VRAM required, Pygmalion offers better chat capability than much larger language models with relatively minimal resources. Our curated dataset of high-quality roleplaying data ensures that your bot will be the optimal RP partner. Both the model weights and the code used to train it are completely open-source, and you can modify/re-distribute it for whatever purpose you want. Language models, including Pygmalion, generally run on GPUs since they need access to fast memory and massive processing power in order to output coherent text at an acceptable speed.
    Starting Price: Free
  • 4
    GPT-5

    GPT-5

    OpenAI

    GPT-5 is the anticipated next iteration of OpenAI's Generative Pre-trained Transformer, a large language model (LLM) still under development. LLMs are trained on massive amounts of text data and are able to generate realistic and coherent text, translate languages, write different kinds of creative content, and answer your questions in an informative way. It's not publicly available yet. OpenAI hasn't announced a release date, but some speculate it could be launched sometime in 2024. It's expected to be even more powerful than its predecessor, GPT-4. GPT-4 is already impressive, capable of generating human-quality text, translating languages, and writing different kinds of creative content. GPT-5 is expected to take these abilities even further, with better reasoning, factual accuracy, and ability to follow instructions.
    Starting Price: $0.0200 per 1000 tokens
  • 5
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
    Starting Price: Free
  • 6
    RedPajama

    RedPajama

    RedPajama

    Foundation models such as GPT-4 have driven rapid improvement in AI. However, the most powerful models are closed commercial models or only partially open. RedPajama is a project to create a set of leading, fully open-source models. Today, we are excited to announce the completion of the first step of this project: the reproduction of the LLaMA training dataset of over 1.2 trillion tokens. The most capable foundation models today are closed behind commercial APIs, which limits research, customization, and their use with sensitive data. Fully open-source models hold the promise of removing these limitations, if the open community can close the quality gap between open and closed models. Recently, there has been much progress along this front. In many ways, AI is having its Linux moment. Stable Diffusion showed that open-source can not only rival the quality of commercial offerings like DALL-E but can also lead to incredible creativity from broad participation by communities.
    Starting Price: Free
  • 7
    Reka

    Reka

    Reka

    Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets.
  • 8
    LongLLaMA

    LongLLaMA

    LongLLaMA

    This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.
    Starting Price: Free
  • 9
    Alpaca

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model.
  • 10
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
    Starting Price: Free
  • 11
    MPT-7B

    MPT-7B

    MosaicML

    Introducing MPT-7B, the latest entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Now you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens!
    Starting Price: Free
  • 12
    Falcon-40B

    Falcon-40B

    Technology Innovation Institute (TII)

    Falcon-40B is a 40B parameters causal decoder-only model built by TII and trained on 1,000B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-40B? It is the best open-source model currently available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions. ⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases. If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at Falcon-40B-Instruct.
    Starting Price: Free
  • 13
    Mistral NeMo

    Mistral NeMo

    Mistral AI

    Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.
    Starting Price: Free
  • 14
    CodeGemma
    CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following. CodeGemma has 3 model variants, a 7B pre-trained variant that specializes in code completion and generation from code prefixes and/or suffixes, a 7B instruction-tuned variant for natural language-to-code chat and instruction following; and a state-of-the-art 2B pre-trained variant that provides up to 2x faster code completion. Complete lines, and functions, and even generate entire blocks of code, whether you're working locally or using Google Cloud resources. Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, reducing errors and debugging time.
  • 15
    OpenLLaMA

    OpenLLaMA

    OpenLLaMA

    OpenLLaMA is a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset. Our model weights can serve as the drop in replacement of LLaMA 7B in existing implementations. We also provide a smaller 3B variant of LLaMA model.
    Starting Price: Free
  • 16
    Flip AI

    Flip AI

    Flip AI

    Our large language model (LLM) can understand and reason through any and all observability data, including unstructured data, so that you can rapidly restore software and systems to health. Our LLM has been trained to understand and mitigate thousands of critical incidents, across every type of architecture imaginable – giving enterprise developers access to the world’s best debugging expert. Our LLM was built to solve the hardest part of the software engineering process – debugging production incidents. Our model requires no training and works on any observability data system. It can learn based on feedback and finetune based on past incidents and patterns in your environment while keeping your data in your boundaries. This means you are resolving critical incidents using Flip in seconds.
  • 17
    Samsung Gauss
    Samsung Gauss is a new AI model developed by Samsung Electronics. It is a large language model (LLM) that has been trained on a massive dataset of text and code. Samsung Gauss is able to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Samsung Gauss is still under development, but it has already learned to perform many kinds of tasks, including: Following instructions and completing requests thoughtfully. Answering your questions in a comprehensive and informative way, even if they are open ended, challenging, or strange. Generating different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc. Here are some examples of what Samsung Gauss can do: Translation: Samsung Gauss can translate text between many different languages, including English, French, German, Spanish, Chinese, Japanese, and Korean. Coding: Samsung Gauss can generate code.
  • 18
    GPT-J

    GPT-J

    EleutherAI

    GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.
    Starting Price: Free
  • 19
    Phi-2

    Phi-2

    Microsoft

    We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models.
  • 20
    OpenAI o1
    OpenAI o1 represents a new series of AI models designed by OpenAI, focusing on enhanced reasoning capabilities. These models, including o1-preview and o1-mini, are trained using a novel reinforcement learning approach to spend more time "thinking" through problems before providing answers. This approach allows o1 to excel in complex problem-solving tasks in areas like coding, mathematics, and science, outperforming previous models like GPT-4o in certain benchmarks. The o1 series aims to tackle challenges that require deeper thought processes, marking a significant step towards AI systems that can reason more like humans, although it's still in the preview stage with ongoing improvements and evaluations.
  • 21
    Codestral Mamba
    As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models.
  • 22
    Qwen2-VL

    Qwen2-VL

    Alibaba

    Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of: SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images
    Starting Price: Free
  • 23
    LLaMA

    LLaMA

    Meta

    LLaMA (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as LLaMA enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like LLaMA is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making LLaMA available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a LLaMA model card that details how we built the model in keeping with our approach to Responsible AI practices.
  • 24
    Qwen

    Qwen

    Alibaba

    Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
    Starting Price: Free
  • 25
    Vicuna

    Vicuna

    lmsys.org

    Vicuna-13B is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. Preliminary evaluation using GPT-4 as a judge shows Vicuna-13B achieves more than 90%* quality of OpenAI ChatGPT and Google Bard while outperforming other models like LLaMA and Stanford Alpaca in more than 90%* of cases. The cost of training Vicuna-13B is around $300. The code and weights, along with an online demo, are publicly available for non-commercial use.
    Starting Price: Free
  • 26
    Giga ML

    Giga ML

    Giga ML

    We just launched X1 large series of Models. Giga ML's most powerful model is available for pre-training and fine-tuning with on-prem deployment. Since we are Open AI compatible, your existing integrations with long chain, llama-index, and all others work seamlessly. You can continue pre-training of LLM's with domain-specific data books or docs or company docs. The world of large language models (LLMs) rapidly expanding, offering unprecedented opportunities for natural language processing across various domains. However, some critical challenges have remained unaddressed. At Giga ML, we proudly introduce the X1 Large 32k model, a pioneering on-premise LLM solution that addresses these critical issues.
  • 27
    StarCoder

    StarCoder

    BigCode

    StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.
    Starting Price: Free
  • 28
    Ferret

    Ferret

    Apple

    An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.
    Starting Price: Free
  • 29
    DBRX

    DBRX

    Databricks

    Today, we are excited to introduce DBRX, an open, general-purpose LLM created by Databricks. Across a range of standard benchmarks, DBRX sets a new state-of-the-art for established open LLMs. Moreover, it provides the open community and enterprises building their own LLMs with capabilities that were previously limited to closed model APIs; according to our measurements, it surpasses GPT-3.5, and it is competitive with Gemini 1.0 Pro. It is an especially capable code model, surpassing specialized models like CodeLLaMA-70B in programming, in addition to its strength as a general-purpose LLM. This state-of-the-art quality comes with marked improvements in training and inference performance. DBRX advances the state-of-the-art in efficiency among open models thanks to its fine-grained mixture-of-experts (MoE) architecture. Inference is up to 2x faster than LLaMA2-70B, and DBRX is about 40% of the size of Grok-1 in terms of both total and active parameter counts.
  • 30
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
    Starting Price: Free
  • 31
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens
  • 32
    Dolly

    Dolly

    Databricks

    Dolly is a cheap-to-build LLM that exhibits a surprising degree of the instruction following capabilities exhibited by ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly works by taking an existing open source 6 billion parameter model from EleutherAI and modifying it ever so slightly to elicit instruction following capabilities such as brainstorming and text generation not present in the original model, using data from Alpaca.
    Starting Price: Free
  • 33
    GPT-3

    GPT-3

    OpenAI

    Our GPT-3 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. Davinci is the most capable model, and Ada is the fastest. The main GPT-3 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 34
    AI21 Studio

    AI21 Studio

    AI21 Studio

    AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.
    Starting Price: $29 per month
  • 35
    Aya

    Aya

    Cohere AI

    Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date.
  • 36
    GPT-3.5

    GPT-3.5

    OpenAI

    GPT-3.5 is the next evolution of GPT 3 large language model from OpenAI. GPT-3.5 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. The main GPT-3.5 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.
    Starting Price: $0.0200 per 1000 tokens
  • 37
    GPT-4 Turbo
    GPT-4 is a large multimodal model (accepting text or image inputs and outputting text) that can solve difficult problems with greater accuracy than any of our previous models, thanks to its broader general knowledge and advanced reasoning capabilities. GPT-4 is available in the OpenAI API to paying customers. Like gpt-3.5-turbo, GPT-4 is optimized for chat but works well for traditional completions tasks using the Chat Completions API. GPT-4 is the latest GPT-4 model with improved instruction following, JSON mode, reproducible outputs, parallel function calling, and more. Returns a maximum of 4,096 output tokens. This preview model is not yet suited for production traffic.
    Starting Price: $0.0200 per 1000 tokens
  • 38
    Codestral

    Codestral

    Mistral AI

    We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.
    Starting Price: Free
  • 39
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
    Starting Price: Free
  • 40
    GPT-4V (Vision)
    GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs.
  • 41
    Stable LM

    Stable LM

    Stability AI

    Stable LM: Stability AI Language Models. The release of Stable LM builds on our experience in open-sourcing earlier language models with EleutherAI, a nonprofit research hub. These language models include GPT-J, GPT-NeoX, and the Pythia suite, which were trained on The Pile open-source dataset. Many recent open-source language models continue to build on these efforts, including Cerebras-GPT and Dolly-2. Stable LM is trained on a new experimental dataset built on The Pile, but three times larger with 1.5 trillion tokens of content. We will release details on the dataset in due course. The richness of this dataset gives Stable LM surprisingly high performance in conversational and coding tasks, despite its small size of 3 to 7 billion parameters (by comparison, GPT-3 has 175 billion parameters). Stable LM 3B is a compact language model designed to operate on portable digital devices like handhelds and laptops, and we’re excited about its capabilities and portability.
    Starting Price: Free
  • 42
    GPT-4

    GPT-4

    OpenAI

    GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.
    Starting Price: $0.0200 per 1000 tokens
  • 43
    PaLM 2

    PaLM 2

    Google

    PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API.
  • 44
    PanGu-α

    PanGu-α

    Huawei

    PanGu-α is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-α, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-α in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-α in performing various tasks under few-shot or zero-shot settings.
  • 45
    EXAONE
    EXAONE is a large language model developed by LG AI Research with the goal of nurturing "Expert AI" in multiple domains. The Expert AI Alliance was formed as a collaborative effort among leading companies in various fields to advance the capabilities of EXAONE. Partner companies within the alliance will serve as mentors, providing skills, knowledge, and data to help EXAONE gain expertise in relevant domains. EXAONE, described as being akin to a college student who has completed general elective courses, requires additional intensive training to become an expert in specific areas. LG AI Research has already demonstrated EXAONE's abilities through real-world applications, such as Tilda, an AI human artist that debuted at New York Fashion Week, as well as AI applications for summarizing customer service conversations and extracting information from complex academic papers.
  • 46
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1 Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
    Starting Price: Free
  • 47
    FLAN-T5

    FLAN-T5

    Google

    FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks.
    Starting Price: Free
  • 48
    Mistral 7B

    Mistral 7B

    Mistral AI

    We tackle the hardest problems to make AI models compute efficient, helpful and trustworthy. We spearhead the family of open models, we give to our users and empower them to contribute their ideas. Mistral-7B-v0.1 is a small, yet powerful model adaptable to many use-cases. Mistral 7B is better than Llama 2 13B on all benchmarks, has natural coding abilities, and 8k sequence length. It’s released under Apache 2.0 license, and we made it easy to deploy on any cloud.
  • 49
    Baichuan-13B

    Baichuan-13B

    Baichuan Intelligent Technology

    Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.
    Starting Price: Free
  • 50
    Megatron-Turing
    Megatron-Turing Natural Language Generation model (MT-NLG), is the largest and the most powerful monolithic transformer English language model with 530 billion parameters. This 105-layer, transformer-based MT-NLG improves upon the prior state-of-the-art models in zero-, one-, and few-shot settings. It demonstrates unmatched accuracy in a broad set of natural language tasks such as, Completion prediction, Reading comprehension, Commonsense reasoning, Natural language inferences, Word sense disambiguation, etc. With the intent of accelerating research on the largest English language model till date and enabling customers to experiment, employ and apply such a large language model on downstream language tasks - NVIDIA is pleased to announce an Early Access program for its managed API service to MT-NLG mode.