Alternatives to Guardrails AI
Compare Guardrails AI alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Guardrails AI in 2025. Compare features, ratings, user reviews, pricing, and more from Guardrails AI competitors and alternatives in order to make an informed decision for your business.
-
1
OORT DataHub
OORT DataHub
Data Collection and Labeling for AI Innovation. Transform your AI development with our decentralized platform that connects you to worldwide data contributors. We combine global crowdsourcing with blockchain verification to deliver diverse, traceable datasets. Global Network: Ensure AI models are trained on data that reflects diverse perspectives, reducing bias, and enhancing inclusivity. Distributed and Transparent: Every piece of data is timestamped for provenance stored securely stored in the OORT cloud , and verified for integrity, creating a trustless ecosystem. Ethical and Responsible AI Development: Ensure contributors retain autonomy with data ownership while making their data available for AI innovation in a transparent, fair, and secure environment Quality Assured: Human verification ensures data meets rigorous standards Access diverse data at scale. Verify data integrity. Get human-validated datasets for AI. Reduce costs while maintaining quality. Scale globally. -
2
LM-Kit.NET
LM-Kit
LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem. Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications. The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project. -
3
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.Starting Price: Free to start -
4
Vellum AI
Vellum
Bring LLM-powered features to production with tools for prompt engineering, semantic search, version control, quantitative testing, and performance monitoring. Compatible across all major LLM providers. Quickly develop an MVP by experimenting with different prompts, parameters, and even LLM providers to quickly arrive at the best configuration for your use case. Vellum acts as a low-latency, highly reliable proxy to LLM providers, allowing you to make version-controlled changes to your prompts – no code changes needed. Vellum collects model inputs, outputs, and user feedback. This data is used to build up valuable testing datasets that can be used to validate future changes before they go live. Dynamically include company-specific context in your prompts without managing your own semantic search infra. -
5
Deepchecks
Deepchecks
Release high-quality LLM apps quickly without compromising on testing. Never be held back by the complex and subjective nature of LLM interactions. Generative AI produces subjective results. Knowing whether a generated text is good usually requires manual labor by a subject matter expert. If you’re working on an LLM app, you probably know that you can’t release it without addressing countless constraints and edge-cases. Hallucinations, incorrect answers, bias, deviation from policy, harmful content, and more need to be detected, explored, and mitigated before and after your app is live. Deepchecks’ solution enables you to automate the evaluation process, getting “estimated annotations” that you only override when you have to. Used by 1000+ companies, and integrated into 300+ open source projects, the core behind our LLM product is widely tested and robust. Validate machine learning models and data with minimal effort, in both the research and the production phases.Starting Price: $1,000 per month -
6
OpenPipe
OpenPipe
OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.Starting Price: $1.20 per 1M tokens -
7
Teammately
Teammately
Teammately is an autonomous AI agent designed to revolutionize AI development by self-iterating AI products, models, and agents to meet your objectives beyond human capabilities. It employs a scientific approach, refining and selecting optimal combinations of prompts, foundation models, and knowledge chunking. To ensure reliability, Teammately synthesizes fair test datasets and constructs dynamic LLM-as-a-judge systems tailored to your project, quantifying AI capabilities and minimizing hallucinations. The platform aligns with your goals through Product Requirement Docs (PRD), enabling focused iteration towards desired outcomes. Key features include multi-step prompting, serverless vector search, and deep iteration processes that continuously refine AI until objectives are achieved. Teammately also emphasizes efficiency by identifying the smallest viable models, reducing costs, and enhancing performance.Starting Price: $25 per month -
8
Traceloop
Traceloop
Traceloop is a comprehensive observability platform designed to monitor, debug, and test the quality of outputs from Large Language Models (LLMs). It offers real-time alerts for unexpected output quality changes, execution tracing for every request, and the ability to gradually roll out changes to models and prompts. Developers can debug and re-run issues from production directly in their Integrated Development Environment (IDE). Traceloop integrates seamlessly with the OpenLLMetry SDK, supporting multiple programming languages including Python, JavaScript/TypeScript, Go, and Ruby. The platform provides a range of semantic, syntactic, safety, and structural metrics to assess LLM outputs, such as QA relevancy, faithfulness, text quality, grammar correctness, redundancy detection, focus assessment, text length, word count, PII detection, secret detection, toxicity detection, regex validation, SQL validation, JSON schema validation, and code validation.Starting Price: $59 per month -
9
Dynamiq
Dynamiq
Dynamiq is a platform built for engineers and data scientists to build, deploy, test, monitor and fine-tune Large Language Models for any use case the enterprise wants to tackle. Key features: 🛠️ Workflows: Build GenAI workflows in a low-code interface to automate tasks at scale 🧠 Knowledge & RAG: Create custom RAG knowledge bases and deploy vector DBs in minutes 🤖 Agents Ops: Create custom LLM agents to solve complex task and connect them to your internal APIs 📈 Observability: Log all interactions, use large-scale LLM quality evaluations 🦺 Guardrails: Precise and reliable LLM outputs with pre-built validators, detection of sensitive content, and data leak prevention 📻 Fine-tuning: Fine-tune proprietary LLM models to make them your ownStarting Price: $125/month -
10
DeepEval
Confident AI
DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.Starting Price: Free -
11
MLflow
MLflow
MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects. -
12
Label Studio
Label Studio
The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input. -
13
HoneyHive
HoneyHive
AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management. -
14
Ragas
Ragas
Ragas is an open-source framework designed to test and evaluate Large Language Model (LLM) applications. It offers automatic metrics to assess performance and robustness, synthetic test data generation tailored to specific requirements, and workflows to ensure quality during development and production monitoring. Ragas integrates seamlessly with existing stacks, providing insights to enhance LLM applications. The platform is maintained by a team of passionate individuals leveraging cutting-edge research and pragmatic engineering practices to empower visionaries redefining LLM possibilities. Synthetically generate high-quality and diverse evaluation data customized for your requirements. Evaluate and ensure the quality of your LLM application in production. Use insights to improve your application. Automatic metrics that helps you understand the performance and robustness of your LLM application.Starting Price: Free -
15
DagsHub
DagsHub
DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.Starting Price: $9 per month -
16
Keywords AI
Keywords AI
Keywords AI is the leading LLM monitoring platform for AI startups. Thousands of engineers use Keywords AI to get complete LLM observability and user analytics. With 1 line of code change, you can easily integrate 200+ LLMs into your codebase. Keywords AI allows you to monitor, test, and improve your AI apps with minimal effort.Starting Price: $0/month -
17
Klu
Klu
Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.Starting Price: $97 -
18
BenchLLM
BenchLLM
Use BenchLLM to evaluate your code on the fly. Build test suites for your models and generate quality reports. Choose between automated, interactive or custom evaluation strategies. We are a team of engineers who love building AI products. We don't want to compromise between the power and flexibility of AI and predictable results. We have built the open and flexible LLM evaluation tool that we have always wished we had. Run and evaluate models with simple and elegant CLI commands. Use the CLI as a testing tool for your CI/CD pipeline. Monitor models performance and detect regressions in production. Test your code on the fly. BenchLLM supports OpenAI, Langchain, and any other API out of the box. Use multiple evaluation strategies and visualize insightful reports. -
19
Athina AI
Athina AI
Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.Starting Price: Free -
20
Portkey
Portkey.ai
Launch production-ready apps with the LMOps stack for monitoring, model management, and more. Replace your OpenAI or other provider APIs with the Portkey endpoint. Manage prompts, engines, parameters, and versions in Portkey. Switch, test, and upgrade models with confidence! View your app performance & user level aggregate metics to optimise usage and API costs Keep your user data secure from attacks and inadvertent exposure. Get proactive alerts when things go bad. A/B test your models in the real world and deploy the best performers. We built apps on top of LLM APIs for the past 2 and a half years and realised that while building a PoC took a weekend, taking it to production & managing it was a pain! We're building Portkey to help you succeed in deploying large language models APIs in your applications. Regardless of you trying Portkey, we're always happy to help!Starting Price: $49 per month -
21
RagaAI
RagaAI
RagaAI is the #1 AI testing platform that helps enterprises mitigate AI risks and make their models secure and reliable. Reduce AI risk exposure across cloud or edge deployments and optimize MLOps costs with intelligent recommendations. A foundation model specifically designed to revolutionize AI testing. Easily identify the next steps to fix dataset and model issues. The AI-testing methods used by most today increase the time commitment and reduce productivity while building models. Also, they leave unforeseen risks, so they perform poorly post-deployment and thus waste both time and money for the business. We have built an end-to-end AI testing platform that helps enterprises drastically improve their AI development pipeline and prevent inefficiencies and risks post-deployment. 300+ tests to identify and fix every model, data, and operational issue, and accelerate AI development with comprehensive testing. -
22
Pezzo
Pezzo
Pezzo is the open-source LLMOps platform built for developers and teams. In just two lines of code, you can seamlessly troubleshoot and monitor your AI operations, collaborate and manage your prompts in one place, and instantly deploy changes to any environment.Starting Price: $0 -
23
Prompt flow
Microsoft
Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI. -
24
ezML
ezML
On our platform, you can quickly configure a pipeline, made up of layers (models providing computer vision functionality) that pass the output of one to the next, to create your desired functionality by layering our prebuilt functionality to match your desired behavior. If you have a niche case that our versatile prebuilts don’t encompass, either reach out to us and we will add it for you, or use our custom model creation to create it and add it to the pipeline yourself. Then easily integrate into your app with the ezML libraries implemented in a variety of frameworks/languages that support the most basic cases as well as realtime streaming with TCP, WebRTC, and RTMP. Deployments auto-scale to meet your product's demand, ensuring uninterrupted functionality no matter how big your user base grows. -
25
Giskard
Giskard
Giskard provides interfaces for AI & Business teams to evaluate and test ML models through automated tests and collaborative feedback from all stakeholders. Giskard speeds up teamwork to validate ML models and gives you peace of mind to eliminate risks of regression, drift, and bias before deploying ML models to production.Starting Price: $0 -
26
Arthur AI
Arthur
Track model performance to detect and react to data drift, improving model accuracy for better business outcomes. Build trust, ensure compliance, and drive more actionable ML outcomes with Arthur’s explainability and transparency APIs. Proactively monitor for bias, track model outcomes against custom bias metrics, and improve the fairness of your models. See how each model treats different population groups, proactively identify bias, and use Arthur's proprietary bias mitigation techniques. Arthur scales up and down to ingest up to 1MM transactions per second and deliver insights quickly. Actions can only be performed by authorized users. Individual teams/departments can have isolated environments with specific access control policies. Data is immutable once ingested, which prevents manipulation of metrics/insights. -
27
Opik
Comet
Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.Starting Price: $39 per month -
28
Instructor
Instructor
Instructor is a tool that enables developers to extract structured data from natural language using Large Language Models (LLMs). Integrating with Python's Pydantic library allows users to define desired output structures through type hints, facilitating schema validation and seamless integration with IDEs. Instructor supports various LLM providers, including OpenAI, Anthropic, Litellm, and Cohere, offering flexibility in implementation. Its customizable nature permits the definition of validators and custom error messages, enhancing data validation processes. Instructor is trusted by engineers from platforms like Langflow, underscoring its reliability and effectiveness in managing structured outputs powered by LLMs. Instructor is powered by Pydantic, which is powered by type hints. Schema validation and prompting are controlled by type annotations; less to learn, and less code to write, and it integrates with your IDE.Starting Price: Free -
29
AgentBench
AgentBench
AgentBench is an evaluation framework specifically designed to assess the capabilities and performance of autonomous AI agents. It provides a standardized set of benchmarks that test various aspects of an agent's behavior, such as task-solving ability, decision-making, adaptability, and interaction with simulated environments. By evaluating agents on tasks across different domains, AgentBench helps developers identify strengths and weaknesses in the agents’ performance, such as their ability to plan, reason, and learn from feedback. The framework offers insights into how well an agent can handle complex, real-world-like scenarios, making it useful for both research and practical development. Overall, AgentBench supports the iterative improvement of autonomous agents, ensuring they meet reliability and efficiency standards before wider application. -
30
TruLens
TruLens
TruLens is an open-source Python library designed to systematically evaluate and track Large Language Model (LLM) applications. It provides fine-grained instrumentation, feedback functions, and a user interface to compare and iterate on app versions, facilitating rapid development and improvement of LLM-based applications. Programmatic tools that assess the quality of inputs, outputs, and intermediate results from LLM applications, enabling scalable evaluation. Fine-grained, stack-agnostic instrumentation and comprehensive evaluations help identify failure modes and systematically iterate to improve applications. An easy-to-use interface that allows developers to compare different versions of their applications, facilitating informed decision-making and optimization. TruLens supports various use cases, including question-answering, summarization, retrieval-augmented generation, and agent-based applications.Starting Price: Free -
31
ChainForge
ChainForge
ChainForge is an open-source visual programming environment designed for prompt engineering and large language model evaluation. It enables users to assess the robustness of prompts and text-generation models beyond anecdotal evidence. Simultaneously test prompt ideas and variations across multiple LLMs to identify the most effective combinations. Evaluate response quality across different prompts, models, and settings to select the optimal configuration for specific use cases. Set up evaluation metrics and visualize results across prompts, parameters, models, and settings, facilitating data-driven decision-making. Manage multiple conversations simultaneously, template follow-up messages, and inspect outputs at each turn to refine interactions. ChainForge supports various model providers, including OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and locally hosted models like Alpaca and Llama. Users can adjust model settings and utilize visualization nodes. -
32
Galileo
Galileo
Models can be opaque in understanding what data they didn’t perform well on and why. Galileo provides a host of tools for ML teams to inspect and find ML data errors 10x faster. Galileo sifts through your unlabeled data to automatically identify error patterns and data gaps in your model. We get it - ML experimentation is messy. It needs a lot of data and model changes across many runs. Track and compare your runs in one place and quickly share reports with your team. Galileo has been built to integrate with your ML ecosystem. Send a fixed dataset to your data store to retrain, send mislabeled data to your labelers, share a collaborative report, and a lot more! Galileo is purpose-built for ML teams to build better quality models, faster. -
33
Humanloop
Humanloop
Eye-balling a few examples isn't enough. Collect end-user feedback at scale to unlock actionable insights on how to improve your models. Easily A/B test models and prompts with the improvement engine built for GPT. Prompts only get your so far. Get higher quality results by fine-tuning on your best data – no coding or data science required. Integration in a single line of code. Experiment with Claude, ChatGPT and other language model providers without touching it again. You can build defensible and innovative products on top of powerful APIs – if you have the right tools to customize the models for your customers. Copy AI fine tune models on their best data, enabling cost savings and a competitive advantage. Enabling magical product experiences that delight over 2 million active users. -
34
Langfuse
Langfuse
Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export dataStarting Price: $29/month -
35
Literal AI
Literal AI
Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications. -
36
Scale Evaluation
Scale
Scale Evaluation offers a comprehensive evaluation platform tailored for developers of large language models. This platform addresses current challenges in AI model assessment, such as the scarcity of high-quality, trustworthy evaluation datasets and the lack of consistent model comparisons. By providing proprietary evaluation sets across various domains and capabilities, Scale ensures accurate model assessments without overfitting. The platform features a user-friendly interface for analyzing and reporting model performance, enabling standardized evaluations for true apples-to-apples comparisons. Additionally, Scale's network of expert human raters delivers reliable evaluations, supported by transparent metrics and quality assurance mechanisms. The platform also offers targeted evaluations with custom sets focusing on specific model concerns, facilitating precise improvements through new training data. -
37
Symflower
Symflower
Symflower enhances software development by integrating static, dynamic, and symbolic analyses with Large Language Models (LLMs). This combination leverages the precision of deterministic analyses and the creativity of LLMs, resulting in higher quality and faster software development. Symflower assists in identifying the most suitable LLM for specific projects by evaluating various models against real-world scenarios, ensuring alignment with specific environments, workflows, and requirements. The platform addresses common LLM challenges by implementing automatic pre-and post-processing, which improves code quality and functionality. By providing the appropriate context through Retrieval-Augmented Generation (RAG), Symflower reduces hallucinations and enhances LLM performance. Continuous benchmarking ensures that use cases remain effective and compatible with the latest models. Additionally, Symflower accelerates fine-tuning and training data curation, offering detailed reports. -
38
Lunary
Lunary
Lunary is an AI developer platform designed to help AI teams manage, improve, and protect Large Language Model (LLM) chatbots. It offers features such as conversation and feedback tracking, analytics on costs and performance, debugging tools, and a prompt directory for versioning and team collaboration. Lunary supports integration with various LLMs and frameworks, including OpenAI and LangChain, and provides SDKs for Python and JavaScript. Guardrails to deflect malicious prompts and sensitive data leaks. Deploy in your VPC with Kubernetes or Docker. Allow your team to judge responses from your LLMs. Understand what languages your users are speaking. Experiment with prompts and LLM models. Search and filter anything in milliseconds. Receive notifications when agents are not performing as expected. Lunary's core platform is 100% open-source. Self-host or in the cloud, get started in minutes.Starting Price: $20 per month -
39
Fetch Hive
Fetch Hive
Fetch Hive is a versatile Generative AI Collaboration Platform packed with features and values that enhance user experience and productivity: Custom RAG Chat Agents: Users can create chat agents with retrieval-augmented generation, which improves response quality and relevance. Centralized Data Storage: It provides a system for easily accessing and managing all necessary data for AI model training and deployment. Real-Time Data Integration: By incorporating real-time data from Google Search, Fetch Hive enhances workflows with up-to-date information, boosting decision-making and productivity. Generative AI Prompt Management: The platform helps in building and managing AI prompts, enabling users to refine and achieve desired outputs efficiently. Fetch Hive is a comprehensive solution for those looking to develop and manage generative AI projects effectively, optimizing interactions with advanced features and streamlined workflows.Starting Price: $49/month -
40
Gantry
Gantry
Get the full picture of your model's performance. Log inputs and outputs and seamlessly enrich them with metadata and user feedback. Figure out how your model is really working, and where you can improve. Monitor for errors and discover underperforming cohorts and use cases. The best models are built on user data. Programmatically gather unusual or underperforming examples to retrain your model. Stop manually reviewing thousands of outputs when changing your prompt or model. Evaluate your LLM-powered apps programmatically. Detect and fix degradations quickly. Monitor new deployments in real-time and seamlessly edit the version of your app your users interact with. Connect your self-hosted or third-party model and your existing data sources. Process enterprise-scale data with our serverless streaming dataflow engine. Gantry is SOC-2 compliant and built with enterprise-grade authentication. -
41
Composio
Composio
Composio is an integration platform designed to enhance AI agents and Large Language Models (LLMs) by providing seamless connections to over 150 tools with minimal code. It supports a wide array of agentic frameworks and LLM providers, facilitating function calling for efficient task execution. Composio offers a comprehensive repository of tools, including GitHub, Salesforce, file management systems, and code execution environments, enabling AI agents to perform diverse actions and subscribe to various triggers. The platform features managed authentication, allowing users to oversee authentication processes for all users and agents from a centralized dashboard. Composio's core capabilities include a developer-first integration approach, built-in authentication management, an expanding catalog of over 90 ready-to-connect tools, a 30% increase in reliability through simplified JSON structures and improved error handling, SOC Type II compliance ensuring maximum data security.Starting Price: $49 per month -
42
Steamship
Steamship
Ship AI faster with managed, cloud-hosted AI packages. Full, built-in support for GPT-4. No API tokens are necessary. Build with our low code framework. Integrations with all major models are built-in. Deploy for an instant API. Scale and share without managing infrastructure. Turn prompts, prompt chains, and basic Python into a managed API. Turn a clever prompt into a published API you can share. Add logic and routing smarts with Python. Steamship connects to your favorite models and services so that you don't have to learn a new API for every provider. Steamship persists in model output in a standardized format. Consolidate training, inference, vector search, and endpoint hosting. Import, transcribe, or generate text. Run all the models you want on it. Query across the results with ShipQL. Packages are full-stack, cloud-hosted AI apps. Each instance you create provides an API and private data workspace. -
43
AgentOps
AgentOps
Industry-leading developer platform to test and debug AI agents. We built the tools so you don't have to. Visually track events such as LLM calls, tools, and multi-agent interactions. Rewind and replay agent runs with point-in-time precision. Keep a full data trail of logs, errors, and prompt injection attacks from prototype to production. Native integrations with the top agent frameworks. Track, save, and monitor every token your agent sees. Manage and visualize agent spending with up-to-date price monitoring. Fine-tune specialized LLMs up to 25x cheaper on saved completions. Build your next agent with evals, observability, and replays. With just two lines of code, you can free yourself from the chains of the terminal and instead visualize your agents’ behavior in your AgentOps dashboard. After setting up AgentOps, each execution of your program is recorded as a session and the data is automatically recorded for you.Starting Price: $40 per month -
44
LangWatch
LangWatch
Guardrails are crucial in AI maintenance, LangWatch safeguards you and your business from exposing sensitive data, prompt injection and keeps your AI from going off the rails, avoiding unforeseen damage to your brand. Understanding the behaviour of both AI and users can be challenging for businesses with integrated AI. Ensure accurate and appropriate responses by constantly maintaining quality through oversight. LangWatch’s safety checks and guardrails prevent common AI issues including jailbreaking, exposing sensitive data, and off-topic conversations. Track conversion rates, output quality, user feedback and knowledge base gaps with real-time metrics — gain constant insights for continuous improvement. Powerful data evaluation allows you to evaluate new models and prompts, develop datasets for testing and run experimental simulations on tailored builds.Starting Price: €99 per month -
45
Citrusˣ
Citrusˣ
Citrusˣ’s end-to-end platform for AI transparency and explainability allows organizations to maintain confidence in their models. Data scientists can use the Summary and Validation pages on the web UI and SDK to validate the performance of their models, investigate results, and address issues. Data science managers and Chief data officers can track the work of their teams, compare models, and ensure KPIs are being met. Risk officers and MRMs can use the web UI and reports to verify the soundness of the model, assess the risks, and ensure AI is being used responsibly and fairly according to regulatory requirements. Executives and regulators can use summarized custom reports to verify the model's strength and accuracy, understand the model's decisions, identify risks, and ensure compliance to protect the organization from potential lawsuits and maintain its reputation. -
46
Writer
Writer
Writer is the full-stack generative AI platform for enterprises. We make it easy for organizations to deploy AI apps and workflows that deliver impactful ROI. Our integrated platform consists of our top-scoring Palmyra LLMs, our highly accurate graph-based RAG, AI guardrails to enforce brand and compliance rules, easy-to-use development tools, and a library of prebuilt apps, extensions, and desktop experiences to get started quickly. With Writer, enterprises build highly-customized AI apps that accelerate growth, increase productivity, and enable AI compliance. Our enterprise-grade platform can be deployed flexibly, keeps your data private, and adheres to global privacy laws and security standards.Starting Price: $18 per user/month -
47
SuperAGI SuperCoder
SuperAGI
SuperAGI SuperCoder is an open-source autonomous system that combines AI-native dev platform & AI agents to enable fully autonomous software development starting with python language & frameworks SuperCoder 2.0 leverages LLMs & Large Action Model (LAM) fine-tuned for python code generation leading to one shot or few shot python functional coding with significantly higher accuracy across SWE-bench & Codebench As an autonomous system, SuperCoder 2.0 combines software guardrails specific to development framework starting with Flask & Django with SuperAGI’s Generally Intelligent Developer Agents to deliver complex real world software systems SuperCoder 2.0 deeply integrates with existing developer stack such as Jira, Github or Gitlab, Jenkins, CSPs and QA solutions such as BrowserStack /Selenium Clouds to ensure a seamless software development experienceStarting Price: Free -
48
Bruinen
Bruinen
Bruinen enables your platform to validate and connect your users’ profiles from across the internet. We offer simple integration with a variety of data sources, including Google, GitHub, and many more. Connect to the data you need and take action on one platform. Our API takes care of the auth, permissions, and rate limits - reducing complexity and increasing efficiency, allowing you to iterate quickly and stay focused on your core product. Allow users to confirm an action via email, SMS, or a magic-link before the action occurs. Let your users customize the actions they want to confirm, all with a pre-built permissions UI. Bruinen offers an easy-to-use, consistent interface to access your users’ profiles. You can connect, authenticate, and pull data from those accounts all from Bruinen’s platform. -
49
RunComfy
RunComfy
Our cloud-based environment that automatically sets up your ComfyUI workflow. Each workflow fully equipped with all the essential custom nodes and models, ensuring a hassle-free beginning. Unlock the full potential of your creative projects with ComfyUI Cloud's high-performance GPUs. Benefit from faster processing speeds at market-leading rates, ensuring both time and cost savings. Launch ComfyUI cloud instantly, no installation required, for a seamless start with a fully prepared environment, ready for immediate use. Access ready-to-use ComfyUI workflows with pre-set models and nodes, avoiding configuration hassles in the cloud. Experience rapid results with our powerful GPUs, boosting productivity and efficiency in creative projects. -
50
LLMWare.ai
LLMWare.ai
Our open source research efforts are focused both on the new "ware" ("middleware" and "software" that will wrap and integrate LLMs), as well as building high-quality, automation-focused enterprise models available in Hugging Face. LLMWare also provides a coherent, high-quality, integrated, and organized framework for development in an open system that provides the foundation for building LLM-applications for AI Agent workflows, Retrieval Augmented Generation (RAG), and other use cases, which include many of the core objects for developers to get started instantly. Our LLM framework is built from the ground up to handle the complex needs of data-sensitive enterprise use cases. Use our pre-built specialized LLMs for your industry or we can customize and fine-tune an LLM for specific use cases and domains. From a robust, integrated AI framework to specialized models and implementation, we provide an end-to-end solution.Starting Price: Free