Audience
Data scientists in search of a solution to enhance their natural language processing models with word embeddings that capture global statistical information from large text corpora
About GloVe
GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.