Alternatives to Falcon-40B
Compare Falcon-40B alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Falcon-40B in 2025. Compare features, ratings, user reviews, pricing, and more from Falcon-40B competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.Starting Price: Free to start -
2
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model. -
3
Falcon-7B
Technology Innovation Institute (TII)
Falcon-7B is a 7B parameters causal decoder-only model built by TII and trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-7B? It outperforms comparable open-source models (e.g., MPT-7B, StableLM, RedPajama etc.), thanks to being trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions.Starting Price: Free -
4
OpenLLaMA
OpenLLaMA
OpenLLaMA is a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset. Our model weights can serve as the drop in replacement of LLaMA 7B in existing implementations. We also provide a smaller 3B variant of LLaMA model.Starting Price: Free -
5
RedPajama
RedPajama
Foundation models such as GPT-4 have driven rapid improvement in AI. However, the most powerful models are closed commercial models or only partially open. RedPajama is a project to create a set of leading, fully open-source models. Today, we are excited to announce the completion of the first step of this project: the reproduction of the LLaMA training dataset of over 1.2 trillion tokens. The most capable foundation models today are closed behind commercial APIs, which limits research, customization, and their use with sensitive data. Fully open-source models hold the promise of removing these limitations, if the open community can close the quality gap between open and closed models. Recently, there has been much progress along this front. In many ways, AI is having its Linux moment. Stable Diffusion showed that open-source can not only rival the quality of commercial offerings like DALL-E but can also lead to incredible creativity from broad participation by communities.Starting Price: Free -
6
MPT-7B
MosaicML
Introducing MPT-7B, the latest entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Now you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens!Starting Price: Free -
7
MosaicML
MosaicML
Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved. -
8
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
9
LTM-1
Magic AI
Magic’s LTM-1 enables 50x larger context windows than transformers. Magic's trained a Large Language Model (LLM) that’s able to take in the gigantic amounts of context when generating suggestions. For our coding assistant, this means Magic can now see your entire repository of code. Larger context windows can allow AI models to reference more explicit, factual information and their own action history. We hope to be able to utilize this research to improve reliability and coherence. -
10
Vicuna
lmsys.org
Vicuna-13B is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. Preliminary evaluation using GPT-4 as a judge shows Vicuna-13B achieves more than 90%* quality of OpenAI ChatGPT and Google Bard while outperforming other models like LLaMA and Stanford Alpaca in more than 90%* of cases. The cost of training Vicuna-13B is around $300. The code and weights, along with an online demo, are publicly available for non-commercial use.Starting Price: Free -
11
Mistral 7B
Mistral AI
Mistral 7B is a 7.3-billion-parameter language model that outperforms larger models like Llama 2 13B across various benchmarks. It employs Grouped-Query Attention (GQA) for faster inference and Sliding Window Attention (SWA) to efficiently handle longer sequences. Released under the Apache 2.0 license, Mistral 7B is accessible for deployment across diverse platforms, including local environments and major cloud services. Additionally, a fine-tuned version, Mistral 7B Instruct, demonstrates enhanced performance in instruction-following tasks, surpassing models like Llama 2 13B Chat.Starting Price: Free -
12
Mixtral 8x7B
Mistral AI
Mixtral 8x7B is a high-quality sparse mixture of experts model (SMoE) with open weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference. It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs. In particular, it matches or outperforms GPT-3.5 on most standard benchmarks.Starting Price: Free -
13
Mistral NeMo
Mistral AI
Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.Starting Price: Free -
14
Teuken 7B
OpenGPT-X
Teuken-7B is a multilingual, open source language model developed under the OpenGPT-X initiative, specifically designed to cater to Europe's diverse linguistic landscape. It has been trained on a dataset comprising over 50% non-English texts, encompassing all 24 official languages of the European Union, ensuring robust performance across these languages. A key innovation in Teuken-7B is its custom multilingual tokenizer, optimized for European languages, which enhances training efficiency and reduces inference costs compared to standard monolingual tokenizers. The model is available in two versions, Teuken-7B-Base, the foundational pre-trained model, and Teuken-7B-Instruct, which has undergone instruction tuning for improved performance in following user prompts. Both versions are accessible on Hugging Face, promoting transparency and collaboration within the AI community. The development of Teuken-7B underscores a commitment to creating AI models that reflect Europe's diversity.Starting Price: Free -
15
Falcon 2
Technology Innovation Institute (TII)
Falcon 2 11B is an open-source, multilingual, and multimodal AI model, uniquely equipped with vision-to-language capabilities. It surpasses Meta’s Llama 3 8B and delivers performance on par with Google’s Gemma 7B, as independently confirmed by the Hugging Face Leaderboard. Looking ahead, the next phase of development will integrate a 'Mixture of Experts' approach to further enhance Falcon 2’s capabilities, pushing the boundaries of AI innovation.Starting Price: Free -
16
LongLLaMA
LongLLaMA
This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.Starting Price: Free -
17
Codestral Mamba
Mistral AI
As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models.Starting Price: Free -
18
GPT-J
EleutherAI
GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.Starting Price: Free -
19
IBM Granite
IBM
IBM® Granite™ is a family of artificial intelligence (AI) models purpose-built for business, engineered from scratch to help ensure trust and scalability in AI-driven applications. Open source Granite models are available today. We make AI as accessible as possible for as many developers as possible. That’s why we have open-sourced core Granite Code, Time Series, Language, and GeoSpatial models and made them available on Hugging Face under permissive Apache 2.0 license that enables broad, unencumbered commercial usage. All Granite models are trained on carefully curated data, with industry-leading levels of transparency about the data that went into them. We have also open-sourced the tools we use to ensure the data is high quality and up to the standards that enterprise-grade applications demand.Starting Price: Free -
20
Qwen2.5-1M
Alibaba
Qwen2.5-1M is an open-source language model developed by the Qwen team, designed to handle context lengths of up to one million tokens. This release includes two model variants, Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, marking the first time Qwen models have been upgraded to support such extensive context lengths. To facilitate efficient deployment, the team has also open-sourced an inference framework based on vLLM, integrated with sparse attention methods, enabling processing of 1M-token inputs with a 3x to 7x speed improvement. Comprehensive technical details, including design insights and ablation experiments, are available in the accompanying technical report.Starting Price: Free -
21
OPT
Meta
Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models. -
22
Granite Code
IBM
We introduce the Granite series of decoder-only code models for code generative tasks (e.g., fixing bugs, explaining code, documenting code), trained with code written in 116 programming languages. A comprehensive evaluation of the Granite Code model family on diverse tasks demonstrates that our models consistently reach state-of-the-art performance among available open source code LLMs. The key advantages of Granite Code models include: All-rounder Code LLM: Granite Code models achieve competitive or state-of-the-art performance on different kinds of code-related tasks, including code generation, explanation, fixing, editing, translation, and more. Demonstrating their ability to solve diverse coding tasks. Trustworthy Enterprise-Grade LLM: All our models are trained on license-permissible data collected following IBM's AI Ethics principles and guided by IBM’s Corporate Legal team for trustworthy enterprise usage.Starting Price: Free -
23
Llama 3.1
Meta
The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.Starting Price: Free -
24
Pixtral Large
Mistral AI
Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.Starting Price: Free -
25
GPT-5
OpenAI
GPT-5 is the anticipated next iteration of OpenAI's Generative Pre-trained Transformer, a large language model (LLM) still under development. LLMs are trained on massive amounts of text data and are able to generate realistic and coherent text, translate languages, write different kinds of creative content, and answer your questions in an informative way. It's not publicly available yet. OpenAI hasn't announced a release date, but some speculate it could be launched sometime in 2024. It's expected to be even more powerful than its predecessor, GPT-4. GPT-4 is already impressive, capable of generating human-quality text, translating languages, and writing different kinds of creative content. GPT-5 is expected to take these abilities even further, with better reasoning, factual accuracy, and ability to follow instructions.Starting Price: $0.0200 per 1000 tokens -
26
Janus-Pro-7B
DeepSeek
Janus-Pro-7B is an innovative open-source multimodal AI model from DeepSeek, designed to excel in both understanding and generating content across text, images, and videos. It leverages a unique autoregressive architecture with separate pathways for visual encoding, enabling high performance in tasks ranging from text-to-image generation to complex visual comprehension. This model outperforms competitors like DALL-E 3 and Stable Diffusion in various benchmarks, offering scalability with versions from 1 billion to 7 billion parameters. Licensed under the MIT License, Janus-Pro-7B is freely available for both academic and commercial use, providing a significant leap in AI capabilities while being accessible on major operating systems like Linux, MacOS, and Windows through Docker.Starting Price: Free -
27
Phi-4
Microsoft
Phi-4 is a 14B parameter state-of-the-art small language model (SLM) that excels at complex reasoning in areas such as math, in addition to conventional language processing. Phi-4 is the latest member of our Phi family of small language models and demonstrates what’s possible as we continue to probe the boundaries of SLMs. Phi-4 is currently available on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and will be available on Hugging Face. Phi-4 outperforms comparable and larger models on math related reasoning due to advancements throughout the processes, including the use of high-quality synthetic datasets, curation of high-quality organic data, and post-training innovations. Phi-4 continues to push the frontier of size vs quality. -
28
fullmoon
fullmoon
Fullmoon is a free, open source application that enables users to interact with large language models directly on their devices, ensuring privacy and offline accessibility. Optimized for Apple silicon, it operates seamlessly across iOS, iPadOS, macOS, and visionOS platforms. Users can personalize the app by adjusting themes, fonts, and system prompts, and it integrates with Apple's Shortcuts for enhanced functionality. Fullmoon supports models like Llama-3.2-1B-Instruct-4bit and Llama-3.2-3B-Instruct-4bit, facilitating efficient on-device AI interactions without the need for an internet connection.Starting Price: Free -
29
Falcon Mamba 7B
Technology Innovation Institute (TII)
Falcon Mamba 7B is the first open-source State Space Language Model (SSLM), introducing a groundbreaking architecture for Falcon models. Recognized as the top-performing open-source SSLM worldwide by Hugging Face, it sets a new benchmark in AI efficiency. Unlike traditional transformers, SSLMs operate with minimal memory requirements and can generate extended text sequences without additional overhead. Falcon Mamba 7B surpasses leading transformer-based models, including Meta’s Llama 3.1 8B and Mistral’s 7B, showcasing superior performance. This innovation underscores Abu Dhabi’s commitment to advancing AI research and development on a global scale.Starting Price: Free -
30
CodeQwen
Alibaba
CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.Starting Price: Free -
31
Code Llama
Meta
Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.Starting Price: Free -
32
Yi-Large
01.AI
Yi-Large is a proprietary large language model developed by 01.AI, offering a 32k context length with both input and output costs at $2 per million tokens. It stands out with its advanced capabilities in natural language processing, common-sense reasoning, and multilingual support, performing on par with leading models like GPT-4 and Claude3 in various benchmarks. Yi-Large is designed for tasks requiring complex inference, prediction, and language understanding, making it suitable for applications like knowledge search, data classification, and creating human-like chatbots. Its architecture is based on a decoder-only transformer with enhancements such as pre-normalization and Group Query Attention, and it has been trained on a vast, high-quality multilingual dataset. This model's versatility and cost-efficiency make it a strong contender in the AI market, particularly for enterprises aiming to deploy AI solutions globally.Starting Price: $0.19 per 1M input token -
33
Falcon 3
Technology Innovation Institute (TII)
Falcon 3 is an open-source large language model (LLM) developed by the Technology Innovation Institute (TII) to make advanced AI accessible to a broader audience. Designed for efficiency, it operates seamlessly on lightweight devices, including laptops, without compromising performance. The Falcon 3 ecosystem comprises four scalable models, each tailored to diverse applications, and supports multiple languages while optimizing resource usage. This latest iteration in TII's LLM series achieves state-of-the-art results in reasoning, language understanding, instruction following, code, and mathematics tasks. By combining high performance with resource efficiency, Falcon 3 aims to democratize access to AI, empowering users across various sectors to leverage advanced technology without the need for extensive computational resources.Starting Price: Free -
34
Sky-T1
NovaSky
Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.Starting Price: Free -
35
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
36
Hippocratic AI
Hippocratic AI
Hippocratic AI is the new state of the art (SOTA) model, outperforming GPT-4 on 105 of 114 healthcare exams and certifications. Hippocratic AI has outperformed GPT-4 on 105 out of 114 tests and certifications, outperformed by a margin of five percent or more on 74 of the certifications, and outperformed by a margin of ten percent or more on 43 of the certifications. Most language models pre-train on the common crawl of the Internet, which may include incorrect and misleading information. Unlike these LLMs, Hippocratic AI is investing heavily in legally acquiring evidence-based healthcare content. We’re conducting a unique Reinforcement Learning with Human Feedback process using healthcare professionals to train and validate the model’s readiness for deployment. We call this RLHF-HP. Hippocratic AI will not release the model until a large number of these licensed professionals deem it safe. -
37
Llama 3.2
Meta
The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.Starting Price: Free -
38
OLMo 2
Ai2
OLMo 2 is a family of fully open language models developed by the Allen Institute for AI (AI2), designed to provide researchers and developers with transparent access to training data, open-source code, reproducible training recipes, and comprehensive evaluations. These models are trained on up to 5 trillion tokens and are competitive with leading open-weight models like Llama 3.1 on English academic benchmarks. OLMo 2 emphasizes training stability, implementing techniques to prevent loss spikes during long training runs, and utilizes staged training interventions during late pretraining to address capability deficiencies. The models incorporate state-of-the-art post-training methodologies from AI2's Tülu 3, resulting in the creation of OLMo 2-Instruct models. An actionable evaluation framework, the Open Language Modeling Evaluation System (OLMES), was established to guide improvements through development stages, consisting of 20 evaluation benchmarks assessing core capabilities. -
39
QwQ-32B
ModelScope
QwQ-32B is an advanced reasoning model developed by Alibaba Cloud's Qwen team, designed to enhance AI's problem-solving capabilities. With 32 billion parameters, it achieves performance comparable to state-of-the-art models like DeepSeek's R1, which has 671 billion parameters. This efficiency is achieved through optimized parameter utilization, allowing QwQ-32B to perform complex tasks such as mathematical reasoning, coding, and general problem-solving with fewer resources. The model supports a context length of up to 32,000 tokens, enabling it to process extensive input data effectively. QwQ-32B is accessible via Alibaba's chatbot service, Qwen Chat, and is open sourced under the Apache 2.0 license, promoting collaboration and further development within the AI community.Starting Price: Free -
40
DeepSeek-V2
DeepSeek
DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.Starting Price: Free -
41
Gemma 2
Google
A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content. -
42
QwQ-Max-Preview
Alibaba
QwQ-Max-Preview is an advanced AI model built on the Qwen2.5-Max architecture, designed to excel in deep reasoning, mathematical problem-solving, coding, and agent-related tasks. This preview version offers a sneak peek at its capabilities, which include improved performance in a wide range of general-domain tasks and the ability to handle complex workflows. QwQ-Max-Preview is slated for an official open-source release under the Apache 2.0 license, offering further advancements and refinements in its full version. It also paves the way for a more accessible AI ecosystem, with the upcoming launch of the Qwen Chat app and smaller variants of the model like QwQ-32B, aimed at developers seeking local deployment options.Starting Price: Free -
43
StarCoder
BigCode
StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.Starting Price: Free -
44
Baichuan-13B
Baichuan Intelligent Technology
Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.Starting Price: Free -
45
Yi-Lightning
Yi-Lightning
Yi-Lightning, developed by 01.AI under the leadership of Kai-Fu Lee, represents the latest advancement in large language models with a focus on high performance and cost-efficiency. It boasts a maximum context length of 16K tokens and is priced at $0.14 per million tokens for both input and output, making it remarkably competitive. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, incorporating fine-grained expert segmentation and advanced routing strategies, which contribute to its efficiency in training and inference. This model has excelled in various domains, achieving top rankings in categories like Chinese, math, coding, and hard prompts on the chatbot arena, where it secured the 6th position overall and 9th in style control. Its development included comprehensive pre-training, supervised fine-tuning, and reinforcement learning from human feedback, ensuring both performance and safety, with optimizations in memory usage and inference speed. -
46
Mathstral
Mistral AI
As a tribute to Archimedes, whose 2311th anniversary we’re celebrating this year, we are proud to release our first Mathstral model, a specific 7B model designed for math reasoning and scientific discovery. The model has a 32k context window published under the Apache 2.0 license. We’re contributing Mathstral to the science community to bolster efforts in advanced mathematical problems requiring complex, multi-step logical reasoning. The Mathstral release is part of our broader effort to support academic projects, it was produced in the context of our collaboration with Project Numina. Akin to Isaac Newton in his time, Mathstral stands on the shoulders of Mistral 7B and specializes in STEM subjects. It achieves state-of-the-art reasoning capacities in its size category across various industry-standard benchmarks. In particular, it achieves 56.6% on MATH and 63.47% on MMLU, with the following MMLU performance difference by subject between Mathstral 7B and Mistral 7B.Starting Price: Free -
47
Jamba
AI21 Labs
Jamba is the most powerful & efficient long context model, open for builders and built for the enterprise. Jamba's latency outperforms all leading models of comparable sizes. Jamba's 256k context window is the longest openly available. Jamba's Mamba-Transformer MoE architecture is designed for cost & efficiency gains. Jamba offers key features of OOTB including function calls, JSON mode output, document objects, and citation mode. Jamba 1.5 models maintain high performance across the full length of their context window. Jamba 1.5 models achieve top scores across common quality benchmarks. Secure deployment that suits your enterprise. Seamlessly start using Jamba on our production-grade SaaS platform. The Jamba model family is available for deployment across our strategic partners. We offer VPC & on-prem deployments for enterprises that require custom solutions. For enterprises that have unique, bespoke requirements, we offer hands-on management, continuous pre-training, etc. -
48
Ministral 8B
Mistral AI
Mistral AI has introduced two advanced models for on-device computing and edge applications, named "les Ministraux": Ministral 3B and Ministral 8B. These models excel in knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B parameter range. They support up to 128k context length and are designed for various applications, including on-device translation, offline smart assistants, local analytics, and autonomous robotics. Ministral 8B features an interleaved sliding-window attention pattern for faster and more memory-efficient inference. Both models can function as intermediaries in multi-step agentic workflows, handling tasks like input parsing, task routing, and API calls based on user intent with low latency and cost. Benchmark evaluations indicate that les Ministraux consistently outperforms comparable models across multiple tasks. As of October 16, 2024, both models are available, with Ministral 8B priced at $0.1 per million tokens.Starting Price: Free -
49
Phi-2
Microsoft
We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models. -
50
TinyLlama
TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.Starting Price: Free