mT5
Multilingual T5 (mT5) is a massively multilingual pretrained text-to-text transformer model, trained following a similar recipe as T5. This repo can be used to reproduce the experiments in the mT5 paper.
mT5 is pretrained on the mC4 corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, and more.
Learn more
Alpaca
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model.
Learn more
GPT-J
GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.
Learn more
MosaicML
Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved.
Learn more