Alternatives to DeepPy

Compare DeepPy alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to DeepPy in 2025. Compare features, ratings, user reviews, pricing, and more from DeepPy competitors and alternatives in order to make an informed decision for your business.

  • 1
    Deeplearning4j

    Deeplearning4j

    Deeplearning4j

    DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
  • 2
    Fabric for Deep Learning (FfDL)
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
  • 3
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 4
    Google Deep Learning Containers
    Build your deep learning project quickly on Google Cloud: Quickly prototype with a portable and consistent environment for developing, testing, and deploying your AI applications with Deep Learning Containers. These Docker images use popular frameworks and are performance optimized, compatibility tested, and ready to deploy. Deep Learning Containers provide a consistent environment across Google Cloud services, making it easy to scale in the cloud or shift from on-premises. You have the flexibility to deploy on Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm.
  • 5
    NVIDIA DIGITS

    NVIDIA DIGITS

    NVIDIA DIGITS

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
  • 6
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • 7
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 8
    TFLearn

    TFLearn

    TFLearn

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
  • 9
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 10
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 11
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
    Starting Price: $3.06 per hour
  • 12
    Zebra by Mipsology
    Zebra by Mipsology is the ideal Deep Learning compute engine for neural network inference. Zebra seamlessly replaces or complements CPUs/GPUs, allowing any neural network to compute faster, with lower power consumption, at a lower cost. Zebra deploys swiftly, seamlessly, and painlessly without knowledge of underlying hardware technology, use of specific compilation tools, or changes to the neural network, the training, the framework, and the application. Zebra computes neural networks at world-class speed, setting a new standard for performance. Zebra runs on highest-throughput boards all the way to the smallest boards. The scaling provides the required throughput, in data centers, at the edge, or in the cloud. Zebra accelerates any neural network, including user-defined neural networks. Zebra processes the same CPU/GPU-based trained neural network with the same accuracy without any change.
  • 13
    Keras

    Keras

    Keras

    Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 14
    Neuralhub

    Neuralhub

    Neuralhub

    Neuralhub is a system that makes working with neural networks easier, helping AI enthusiasts, researchers, and engineers to create, experiment, and innovate in the AI space. Our mission extends beyond providing tools; we're also creating a community, a place to share and work together. We aim to simplify the way we do deep learning today by bringing all the tools, research, and models into a single collaborative space, making AI research, learning, and development more accessible. Build a neural network from scratch or use our library of common network components, layers, architectures, novel research, and pre-trained models to experiment and build something of your own. Construct your neural network with one click. Visually see and interact with every component in the network. Easily tune hyperparameters such as epochs, features, labels and much more.
  • 15
    Neuri

    Neuri

    Neuri

    We conduct and implement cutting-edge research on artificial intelligence to create real advantage in financial investment. Illuminating the financial market with ground-breaking neuro-prediction. We combine novel deep reinforcement learning algorithms and graph-based learning with artificial neural networks for modeling and predicting time series. Neuri strives to generate synthetic data emulating the global financial markets, testing it with complex simulations of trading behavior. We bet on the future of quantum optimization in enabling our simulations to surpass the limits of classical supercomputing. Financial markets are highly fluid, with dynamics evolving over time. As such we build AI algorithms that adapt and learn continuously, in order to uncover the connections between different financial assets, classes and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored.
  • 16
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • 17
    MXNet

    MXNet

    The Apache Software Foundation

    A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
  • 18
    Deep Learning Training Tool
    The Intel® Deep Learning SDK is a set of tools for data scientists and software developers to develop, train, and deploy deep learning solutions. The SDK encompasses a training tool and a deployment tool that can be used separately or together in a complete deep learning workflow. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. The web user interface includes an easy to use wizard to create deep learning models, with tooltips to guide you through the entire process.
  • 19
    Deci

    Deci

    Deci AI

    Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.
  • 20
    Chainer

    Chainer

    Chainer

    A powerful, flexible, and intuitive framework for neural networks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort. Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures. Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug. Comes with ChainerRLA, a library that implements various state-of-the-art deep reinforcement algorithms. Also, with ChainerCVA, a collection of tools to train and run neural networks for computer vision tasks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.
  • 21
    VisionPro Deep Learning
    VisionPro Deep Learning is the best-in-class deep learning-based image analysis software designed for factory automation. Its field-tested algorithms are optimized specifically for machine vision, with a graphical user interface that simplifies neural network training without compromising performance. VisionPro Deep Learning solves complex applications that are too challenging for traditional machine vision alone, while providing a consistency and speed that aren’t possible with human inspection. When combined with VisionPro’s rule-based vision libraries, automation engineers can easily choose the best the tool for the task at hand. VisionPro Deep Learning combines a comprehensive machine vision tool library with advanced deep learning tools inside a common development and deployment framework. It simplifies the development of highly variable vision applications.
  • 22
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 23
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
    Starting Price: $2495/year (per user)
  • 24
    Neural Magic

    Neural Magic

    Neural Magic

    GPUs bring data in and out quickly, but have little locality of reference because of their small caches. They are geared towards applying a lot of compute to little data, not little compute to a lot of data. The networks designed to run on them therefore execute full layer after full layer in order to saturate their computational pipeline (see Figure 1 below). In order to deal with large models, given their small memory size (tens of gigabytes), GPUs are grouped together and models are distributed across them, creating a complex and painful software stack, complicated by the need to deal with many levels of communication and synchronization among separate machines. CPUs, on the other hand, have large, much faster caches than GPUs, and have an abundance of memory (terabytes). A typical CPU server can have memory equivalent to tens or even hundreds of GPUs. CPUs are perfect for a brain-like ML world in which parts of an extremely large network are executed piecemeal, as needed.
  • 25
    Darknet

    Darknet

    Darknet

    Darknet is an open-source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. You can find the source on GitHub or you can read more about what Darknet can do. Darknet is easy to install with only two optional dependencies, OpenCV if you want a wider variety of supported image types, and CUDA if you want GPU computation. Darknet on the CPU is fast but it's like 500 times faster on GPU! You'll have to have an Nvidia GPU and you'll have to install CUDA. By default, Darknet uses stb_image.h for image loading. If you want more support for weird formats (like CMYK jpegs, thanks Obama) you can use OpenCV instead! OpenCV also allows you to view images and detections without having to save them to disk. Classify images with popular models like ResNet and ResNeXt. Recurrent neural networks are all the rage for time-series data and NLP.
  • 26
    SynapseAI

    SynapseAI

    Habana Labs

    Like our accelerator hardware, was purpose-designed to optimize deep learning performance, efficiency, and most importantly for developers, ease of use. With support for popular frameworks and models, the goal of SynapseAI is to facilitate ease and speed for developers, using the code and tools they use regularly and prefer. In essence, SynapseAI and its many tools and support are designed to meet deep learning developers where you are — enabling you to develop what and how you want. Habana-based deep learning processors, preserve software investments, and make it easy to build new models— for both training and deployment of the numerous and growing models defining deep learning, generative AI and large language models.
  • 27
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 28
    DataMelt

    DataMelt

    jWork.ORG

    DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported. DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.
  • 29
    PaddlePaddle

    PaddlePaddle

    PaddlePaddle

    PaddlePaddle is based on Baidu's years of deep learning technology research and business applications and integrates deep learning core framework, basic model library, end-to-end development kit, tool components and service platform. It was officially open-sourced in 2016 and is a comprehensive An industry-level deep learning platform with open source, leading technology, and complete functions. The flying paddle is derived from industrial practice and has always been committed to in-depth integration with the industry. At present, flying paddles have been widely used in industry, agriculture, and service industries, serving 3.2 million developers, and working with partners to help more and more industries complete AI empowerment.
  • 30
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 31
    DeepSpeed

    DeepSpeed

    Microsoft

    DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
    Starting Price: Free
  • 32
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 33
    ABEJA Platform
    The ABEJA platform is an innovative AI platform consisting of cutting-edge AI technologies ranging from IoT, Big Data and Deep Learning. While the amount of data circulation was 4.4 zettabytes in 2013, the amount of data circulation is expected to reach 44 zettabytes in 2020. How do we accumulate and utilize the mass and diverse sets of data? Additionally, how do we derive new value out of the data? ABEJA Platform is the world’s most advanced AI platform technology, which promote the utilization of all kinds of data by tackling technological problems that will become more complicated and serious in the future. Provides high-level image analysis function using Deep Learning. Processes large-scale data at high speed through advanced decentralized processing. Analyses accumulated data by utilizing Machine Learning and Deep Learning. Easily outputs analysis result at any system by API.
  • 34
    Horovod

    Horovod

    Horovod

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
    Starting Price: Free
  • 35
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 36
    Abacus.AI

    Abacus.AI

    Abacus.AI

    Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.
  • 37
    CerebrumX AI Powered Connected Vehicle Data Platform
    CerebrumX AI Powered Connected Vehicle Data Platform - ADLP is the industry’s first AI-driven Augmented Deep Learning Connected Vehicle Data Platform that collects & homogenizes this vehicle data from millions of vehicles, in real-time, and enriches it with augmented data to generate deep & contextual insights. ADLP provides a plug-in to manage and maintain Data Privacy, Anonymization and Consent Management at the source, to ensure that any personal information is treated based on the user consent. CerebrumX takes pride in bringing privacy to everything it does, going beyond just compliance with its white-label app and web solution.
  • 38
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
    Starting Price: Free
  • 39
    Overview

    Overview

    Overview

    Reliable, adaptable computer vision systems for any factory. AI and image capture are integrated into every step of manufacturing. Overview’s inspection systems are built with deep learning technology which allows us to find mistakes more consistently and in a wider variety of situations. Enhanced traceability with remote access and support. Our solutions create a traceable visual record of every unit. You can quickly identify the root cause of production problems and quality issues. Whether you are just digitizing your inspection or have an existing vision system that is underperforming, Overview has a solution that can drive waste out of your manufacturing operations. Demo the Snap platform to see how we improve your factory efficiency. Deep learning automated inspection solutions radically improve defect detection. Improved yields, better traceability, easy setup, and outstanding support.
  • 40
    Segmind

    Segmind

    Segmind

    Segmind provides simplified access to large computing. You can use it to run your high-performance workloads such as Deep learning training or other complex processing jobs. Segmind offers zero-setup environments within minutes and lets your share access with your team members. Segmind's MLOps platform can also be used to manage deep learning projects end-to-end with integrated data storage and experiment tracking. ML engineers are not cloud engineers and cloud infrastructure management is a pain. So, we abstracted away all of it so that your ML team can focus on what they do best, and build models better and faster. Training ML/DL models take time and can get expensive quickly. But with Segmind, you can scale up your compute seamlessly while also reducing your costs by up to 70%, with our managed spot instances. ML managers today don't have a bird's eye view of ML development activities and cost.
  • 41
    Strong Analytics

    Strong Analytics

    Strong Analytics

    Our platforms provide a trusted foundation upon which to design, build, and deploy custom machine learning and artificial intelligence solutions. Build next-best-action applications that learn, adapt, and optimize using reinforcement-learning based algorithms. Custom, continuously-improving deep learning vision models to solve your unique challenges. Predict the future using state-of-the-art forecasts. Enable smarter decisions throughout your organization with cloud based tools to monitor and analyze. The process of taking a modern machine learning application from research and ad-hoc code to a robust, scalable platform remains a key challenge for experienced data science and engineering teams. Strong ML simplifies this process with a complete suite of tools to manage, deploy, and monitor your machine learning applications.
  • 42
    ThirdAI

    ThirdAI

    ThirdAI

    ThirdAI (pronunciation: /THərd ī/ Third eye) is a cutting-edge Artificial intelligence startup carving scalable and sustainable AI. ThirdAI accelerator builds hash-based processing algorithms for training and inference with neural networks. The technology is a result of 10 years of innovation in finding efficient (beyond tensor) mathematics for deep learning. Our algorithmic innovation has demonstrated how we can make Commodity x86 CPUs 15x or faster than most potent NVIDIA GPUs for training large neural networks. The demonstration has shaken the common knowledge prevailing in the AI community that specialized processors like GPUs are significantly superior to CPUs for training neural networks. Our innovation would not only benefit current AI training by shifting to lower-cost CPUs, but it should also allow the “unlocking” of AI training workloads on GPUs that were not previously feasible.
  • 43
    Peltarion

    Peltarion

    Peltarion

    The Peltarion Platform is a low-code deep learning platform that allows you to build commercially viable AI-powered solutions, at speed and at scale. The platform allows you to build, tweak, fine-tune and deploy deep learning models. It is end-to-end, and lets you do everything from uploading data to building models and putting them into production. The Peltarion Platform and its precursor have been used to solve problems for organizations like NASA, Tesla, Dell, and Harvard. Build your own AI models or use our pre-trained ones. Just drag & drop, even the cutting-edge ones! Own the whole development process from building, training, tweaking to deploying AI. All under one hood. Operationalize AI and drive business value, with the help of our platform. Our Faster AI course is created for users who have no prior knowledge of AI. After completing seven short modules, users will be able to design and tweak their own AI models on the Peltarion platform.
  • 44
    Hive AutoML
    Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more.
  • 45
    Produvia

    Produvia

    Produvia

    Produvia is a serverless machine-learning development service. Partner with Produvia to develop and deploy machine models using serverless cloud infrastructure. Fortune 500 companies and Global 500 enterprises partner with Produvia to develop and deploy machine learning models using modern cloud infrastructure. At Produvia, we use state-of-the-art methods in machine learning and deep learning technologies to solve business problems. Organizations overspend on infrastructure costs. Modern organizations use serverless architectures to reduce server costs. Organizations are held back by complex servers and legacy code. Modern organizations use machine learning technologies to rewrite technology stacks. Companies hire software developers to write code. Modern companies use machine learning to develop software that writes code.
    Starting Price: $1,000 per month
  • 46
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 47
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
    Starting Price: Free
  • 48
    NVIDIA DeepStream SDK
    NVIDIA's DeepStream SDK is a comprehensive streaming analytics toolkit based on GStreamer, designed for AI-based multi-sensor processing, including video, audio, and image understanding. It enables developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. DeepStream is integral to NVIDIA Metropolis, a platform for building end-to-end services that transform pixel and sensor data into actionable insights. The SDK offers a powerful and flexible environment suitable for a wide range of industries, supporting multiple programming options such as C/C++, Python, and Graph Composer's intuitive UI. It allows for real-time insights by understanding rich, multi-modal sensor data at the edge and supports managed AI services through deployment in cloud-native containers orchestrated with Kubernetes.
  • 49
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 50
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.