Alternatives to Databricks Data Intelligence Platform

Compare Databricks Data Intelligence Platform alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Databricks Data Intelligence Platform in 2026. Compare features, ratings, user reviews, pricing, and more from Databricks Data Intelligence Platform competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 2
    Teradata VantageCloud
    Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 3
    DataHub

    DataHub

    DataHub

    DataHub Cloud is an event-driven AI & Data Context Platform that uses active metadata for real-time visibility across your entire data ecosystem. Unlike traditional data catalogs that provide outdated snapshots, DataHub Cloud instantly propagates changes, automatically enforces policies, and connects every data source across platforms with 100+ pre-built connectors. Built on an open source foundation with a thriving community of 13,000+ members, DataHub gives you unmatched flexibility to customize and extend without vendor lock-in. DataHub Cloud is a modern metadata platform with REST and GraphQL APIs that optimize performance for complex queries, essential for AI-ready data management and ML lifecycle support.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 4
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 5
    dbt

    dbt

    dbt Labs

    dbt helps data teams transform raw data into trusted, analysis-ready datasets faster. With dbt, data analysts and data engineers can collaborate on version-controlled SQL models, enforce testing and documentation standards, lean on detailed metadata to troubleshoot and optimize pipelines, and deploy transformations reliably at scale. Built on modern software engineering best practices, dbt brings transparency and governance to every step of the data transformation workflow. Thousands of companies, from startups to Fortune 500 enterprises, rely on dbt to improve data quality and trust as well as drive efficiencies and reduce costs as they deliver AI-ready data across their organization. Whether you’re scaling data operations or just getting started, dbt empowers your team to move from raw data to actionable analytics with confidence.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 6
    Kubit

    Kubit

    Kubit

    Your data, your insights—no third-party ownership or black-box analytics. Kubit is the leading Customer Journey Analytics platform for enterprises, enabling self-service insights, rapid decisions, and full transparency—without engineering dependencies or vendor lock-in. Unlike traditional tools, Kubit eliminates data silos, letting teams analyze customer behavior directly from Snowflake, BigQuery, or Databricks—no ETL or forced extraction needed. With built-in funnel, path, retention, and cohort analysis, Kubit empowers product teams with fast, exploratory analytics to detect anomalies, surface trends, and drive engagement—without compromise. Enterprises like Paramount, TelevisaUnivision, and Miro trust Kubit for its agility, reliability, and customer-first approach. Learn more at kubit.ai.
    Compare vs. Databricks Data Intelligence Platform View Software
    Visit Website
  • 7
    Bright Data

    Bright Data

    Bright Data

    Bright Data is the world's #1 web data, proxies, & data scraping solutions platform. Fortune 500 companies, academic institutions and small businesses all rely on Bright Data's products, network and solutions to retrieve crucial public web data in the most efficient, reliable and flexible manner, so they can research, monitor, analyze data and make better informed decisions. Bright Data is used worldwide by 20,000+ customers in nearly every industry. Its products range from no-code data solutions utilized by business owners, to a robust proxy and scraping infrastructure used by developers and IT professionals. Bright Data products stand out because they provide a cost-effective way to perform fast and stable public web data collection at scale, effortless conversion of unstructured data into structured data and superior customer experience, while being fully transparent and compliant.
  • 8
    StarTree

    StarTree

    StarTree

    StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.
  • 9
    Altair Monarch
    An industry leader with over 30 years of experience in data discovery and transformation, Altair Monarch offers the fastest and easiest way to extract data from any source. Simple to construct workflows that require no coding enable users to collaborate as they transform difficult data such as PDFs spreadsheets, text files, as well as from big data and other structured sources, into rows and columns. Whether data is on premises or in the cloud, Altair can automate preparation tasks for expedited results and deliver data you trust for smart business decision making. To learn more about Altair Monarch or download a free version of its enterprise software, please click the links below.
  • 10
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 11
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
  • 12
    AWS Glue

    AWS Glue

    Amazon

    AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and combine data for analytics, machine learning, and application development. AWS Glue provides all the capabilities needed for data integration so that you can start analyzing your data and putting it to use in minutes instead of months. Data integration is the process of preparing and combining data for analytics, machine learning, and application development. It involves multiple tasks, such as discovering and extracting data from various sources; enriching, cleaning, normalizing, and combining data; and loading and organizing data in databases, data warehouses, and data lakes. These tasks are often handled by different types of users that each use different products. AWS Glue runs in a serverless environment. There is no infrastructure to manage, and AWS Glue provisions, configures, and scales the resources required to run your data integration jobs.
  • 13
    Alation

    Alation

    Alation

    The Alation Agentic Data Intelligence Platform enables organizations to scale and accelerate their AI and data initiatives. By unifying search, cataloging, governance, lineage, and analytics, it transforms metadata into a strategic asset for decision-making. The platform’s AI-powered agents—including Documentation, Data Quality, and Data Products Builder—automate complex data management tasks. With active metadata, workflow automation, and more than 120 pre-built connectors, Alation integrates seamlessly into modern enterprise environments. It helps organizations build trusted AI models by ensuring data quality, transparency, and compliance across the business. Trusted by 40% of the Fortune 100, Alation empowers teams to make faster, more confident decisions with trusted data.
  • 14
    Amazon Athena
    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. Athena is easy to use. Simply point to your data in Amazon S3, define the schema, and start querying using standard SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-scale datasets. Athena is out-of-the-box integrated with AWS Glue Data Catalog, allowing you to create a unified metadata repository across various services, crawl data sources to discover schemas and populate your Catalog with new and modified table and partition definitions, and maintain schema versioning.
  • 15
    Amazon DataZone
    Amazon DataZone is a data management service that enables customers to catalog, discover, share, and govern data stored across AWS, on-premises, and third-party sources. It allows administrators and data stewards to manage and control access to data using fine-grained controls, ensuring that users have the appropriate level of privileges and context. The service simplifies data access for engineers, data scientists, product managers, analysts, and business users, facilitating data-driven insights through seamless collaboration. Key features of Amazon DataZone include a business data catalog for searching and requesting access to published data, project collaboration tools for managing and monitoring data assets, a web-based portal providing personalized views for data analytics, and governed data sharing workflows to ensure appropriate data access. Additionally, Amazon DataZone automates data discovery and cataloging using machine learning.
  • 16
    Amazon EMR
    Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting.
  • 17
    Cake AI

    Cake AI

    Cake AI

    Cake AI is a comprehensive AI infrastructure platform that enables teams to build and deploy AI applications using hundreds of pre-integrated open source components, offering complete visibility and control. It provides a curated, end-to-end selection of fully managed, best-in-class commercial and open source AI tools, with pre-built integrations across the full breadth of components needed to move an AI application into production. Cake supports dynamic autoscaling, comprehensive security measures including role-based access control and encryption, advanced monitoring, and infrastructure flexibility across various environments, including Kubernetes clusters and cloud services such as AWS. Its data layer equips teams with tools for data ingestion, transformation, and analytics, leveraging tools like Airflow, DBT, Prefect, Metabase, and Superset. For AI operations, Cake integrates with model catalogs like Hugging Face and supports modular workflows using LangChain, LlamaIndex, and more.
  • 18
    C3 AI Suite
    Build, deploy, and operate Enterprise AI applications. The C3 AI® Suite uses a unique model-driven architecture to accelerate delivery and reduce the complexities of developing enterprise AI applications. The C3 AI model-driven architecture provides an “abstraction layer,” that allows developers to build enterprise AI applications by using conceptual models of all the elements an application requires, instead of writing lengthy code. This provides significant benefits: Use AI applications and models that optimize processes for every product, asset, customer, or transaction across all regions and businesses. Deploy AI applications and see results in 1-2 quarters – rapidly roll out additional applications and new capabilities. Unlock sustained value – hundreds of millions to billions of dollars per year – from reduced costs, increased revenue, and higher margins. Ensure systematic, enterprise-wide governance of AI with C3.ai’s unified platform that offers data lineage and governance.
  • 19
    Azure Batch

    Azure Batch

    Microsoft

    Batch runs the applications that you use on workstations and clusters. It’s easy to cloud-enable your executable files and scripts to scale out. Batch provides a queue to receive the work that you want to run and executes your applications. Describe the data that need to be moved to the cloud for processing, how the data should be distributed, what parameters to use for each task, and the command to start the process. Think about it like an assembly line with multiple applications. With Batch, you can share data between steps and manage the execution as a whole. Batch processes jobs on demand, not on a predefined schedule, so your customers run jobs in the cloud when they need to. Manage who can access Batch and how many resources they can use, and ensure that requirements such as encryption are met. Rich monitoring helps you to know what’s going on and identify problems.
  • 20
    Azure Data Factory
    Integrate data silos with Azure Data Factory, a service built for all data integration needs and skill levels. Easily construct ETL and ELT processes code-free within the intuitive visual environment, or write your own code. Visually integrate data sources using more than 90+ natively built and maintenance-free connectors at no added cost. Focus on your data—the serverless integration service does the rest. Data Factory provides a data integration and transformation layer that works across your digital transformation initiatives. Data Factory can help independent software vendors (ISVs) enrich their SaaS apps with integrated hybrid data as to deliver data-driven user experiences. Pre-built connectors and integration at scale enable you to focus on your users while Data Factory takes care of the rest.
  • 21
    Azure Data Lake
    Azure Data Lake includes all the capabilities required to make it easy for developers, data scientists, and analysts to store data of any size, shape, and speed, and do all types of processing and analytics across platforms and languages. It removes the complexities of ingesting and storing all of your data while making it faster to get up and running with batch, streaming, and interactive analytics. Azure Data Lake works with existing IT investments for identity, management, and security for simplified data management and governance. It also integrates seamlessly with operational stores and data warehouses so you can extend current data applications. We’ve drawn on the experience of working with enterprise customers and running some of the largest scale processing and analytics in the world for Microsoft businesses like Office 365, Xbox Live, Azure, Windows, Bing, and Skype. Azure Data Lake solves many of the productivity and scalability challenges that prevent you from maximizing the
  • 22
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle with Azure Machine Learning Studio. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 23
    Azure Notebooks
    Develop and run code from anywhere with Jupyter notebooks on Azure. Get started for free. Get a better experience with a free Azure Subscription. Perfect for data scientists, developers, students, or anyone. Develop and run code in your browser regardless of industry or skillset. Supporting more languages than any other platform including Python 2, Python 3, R, and F#. Created by Microsoft Azure: Always accessible, always available from any browser, anywhere in the world.
  • 24
    Azure Synapse Analytics
    Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
  • 25
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 26
    Apache Zeppelin
    Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more. IPython interpreter provides comparable user experience like Jupyter Notebook. This release includes Note level dynamic form, note revision comparator and ability to run paragraph sequentially, instead of simultaneous paragraph execution in previous releases. Interpreter lifecycle manager automatically terminate interpreter process on idle timeout. So resources are released when they're not in use.
  • 27
    5X

    5X

    5X

    5X is an all-in-one data platform that provides everything you need to centralize, clean, model, and analyze your data. Designed to simplify data management, 5X offers seamless integration with over 500 data sources, ensuring uninterrupted data movement across all your systems with pre-built and custom connectors. The platform encompasses ingestion, warehousing, modeling, orchestration, and business intelligence, all rendered in an easy-to-use interface. 5X supports various data movements, including SaaS apps, databases, ERPs, and files, automatically and securely transferring data to data warehouses and lakes. With enterprise-grade security, 5X encrypts data at the source, identifying personally identifiable information and encrypting data at a column level. The platform is designed to reduce the total cost of ownership by 30% compared to building your own platform, enhancing productivity with a single interface to build end-to-end data pipelines.
  • 28
    Anyscale

    Anyscale

    Anyscale

    Anyscale is a unified AI platform built around Ray, the world’s leading AI compute engine, designed to help teams build, deploy, and scale AI and Python applications efficiently. The platform offers RayTurbo, an optimized version of Ray that delivers up to 4.5x faster data workloads, 6.1x cost savings on large language model inference, and up to 90% lower costs through elastic training and spot instances. Anyscale provides a seamless developer experience with integrated tools like VSCode and Jupyter, automated dependency management, and expert-built app templates. Deployment options are flexible, supporting public clouds, on-premises clusters, and Kubernetes environments. Anyscale Jobs and Services enable reliable production-grade batch processing and scalable web services with features like job queuing, retries, observability, and zero-downtime upgrades. Security and compliance are ensured with private data environments, auditing, access controls, and SOC 2 Type II attestation.
  • 29
    Apache Airflow

    Apache Airflow

    The Apache Software Foundation

    Airflow is a platform created by the community to programmatically author, schedule and monitor workflows. Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity. Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically. Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment. Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine. No more command-line or XML black-magic! Use standard Python features to create your workflows, including date time formats for scheduling and loops to dynamically generate tasks. This allows you to maintain full flexibility when building your workflows.
  • 30
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 31
    Cloud Dataprep
    Cloud Dataprep by Trifacta is an intelligent data service for visually exploring, cleaning, and preparing structured and unstructured data for analysis, reporting, and machine learning. Because Cloud Dataprep is serverless and works at any scale, there is no infrastructure to deploy or manage. Your next ideal data transformation is suggested and predicted with each UI input, so you don’t have to write code. Cloud Dataprep is an integrated partner service operated by Trifacta and based on their industry-leading data preparation solution. Google works closely with Trifacta to provide a seamless user experience that removes the need for up-front software installation, separate licensing costs, or ongoing operational overhead. Cloud Dataprep is fully managed and scales on demand to meet your growing data preparation needs so you can stay focused on analysis.
  • 32
    DataRobot

    DataRobot

    DataRobot

    AI Cloud is a new approach built for the demands, challenges and opportunities of AI today. A single system of record, accelerating the delivery of AI to production for every organization. All users collaborate in a unified environment built for continuous optimization across the entire AI lifecycle. The AI Catalog enables seamlessly finding, sharing, tagging, and reusing data, helping to speed time to production and increase collaboration. The catalog provides easy access to the data needed to answer a business problem while ensuring security, compliance, and consistency. If your database is protected by a network policy that only allows connections from specific IP addresses, contact Support for a list of addresses that an administrator must add to your network policy (whitelist).
  • 33
    DataStax

    DataStax

    DataStax

    The Open, Multi-Cloud Stack for Modern Data Apps. Built on open-source Apache Cassandra™. Global-scale and 100% uptime without vendor lock-in. Deploy on multi-cloud, on-prem, open-source, and Kubernetes. Elastic and pay-as-you-go for improved TCO. Start building faster with Stargate APIs for NoSQL, real-time, reactive, JSON, REST, and GraphQL. Skip the complexity of multiple OSS projects and APIs that don’t scale. Ideal for commerce, mobile, AI/ML, IoT, microservices, social, gaming, and richly interactive applications that must scale-up and scale-down with demand. Get building modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Use REST, GraphQL, JSON with your favorite full-stack framework Richly interactive apps that are elastic and viral-ready from Day 1. Pay-as-you-go Apache Cassandra DBaaS that scales effortlessly and affordably.
  • 34
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 35
    Dataplex Universal Catalog
    Dataplex Universal Catalog is Google Cloud’s intelligent governance platform for data and AI artifacts. It centralizes discovery, management, and monitoring across data lakes, warehouses, and databases, giving teams unified access to trusted data. With Vertex AI integration, users can instantly find datasets, models, features, and related assets in one search experience. It supports semantic search, data lineage, quality checks, and profiling to improve trust and compliance. Integrated with BigQuery and BigLake, it enables end-to-end governance for both proprietary and open lakehouse environments. Dataplex Universal Catalog helps organizations democratize data access, enforce governance, and accelerate analytics and AI initiatives.
  • 36
    Datrics

    Datrics

    Datrics.ai

    The platform enables machine learning for non-practitioners and automates MLOps for professionals within an enterprise. No prior learning needed, just upload your data to datrics.ai to do experiments, prototyping, and self-service analytics faster with template pipelines, create APIs, and forecasting dashboards in a couple of clicks.
  • 37
    H2O.ai

    H2O.ai

    H2O.ai

    H2O.ai is the open source leader in AI and machine learning with a mission to democratize AI for everyone. Our industry-leading enterprise-ready platforms are used by hundreds of thousands of data scientists in over 20,000 organizations globally. We empower every company to be an AI company in financial services, insurance, healthcare, telco, retail, pharmaceutical, and marketing and delivering real value and transforming businesses today.
  • 38
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 39
    Dremio

    Dremio

    Dremio

    Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable.
  • 40
    GeoSpock

    GeoSpock

    GeoSpock

    GeoSpock enables data fusion for the connected world with GeoSpock DB – the space-time analytics database. GeoSpock DB is a unique, cloud-native database optimised for querying for real-world use cases, able to fuse multiple sources of Internet of Things (IoT) data together to unlock its full value, whilst simultaneously reducing complexity and cost. GeoSpock DB enables efficient storage, data fusion, and rapid programmatic access to data, and allows you to run ANSI SQL queries and connect to analytics tools via JDBC/ODBC connectors. Users are able to perform analysis and share insights using familiar toolsets, with support for common BI tools (such as Tableau™, Amazon QuickSight™, and Microsoft Power BI™), and Data Science and Machine Learning environments (including Python Notebooks and Apache Spark). The database can also be integrated with internal applications and web services – with compatibility for open-source and visualisation libraries such as Kepler and Cesium.js.
  • 41
    Delta Lake

    Delta Lake

    Delta Lake

    Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments.
  • 42
    Matillion

    Matillion

    Matillion

    Cloud-Native ETL Tool. Load and Transform Data To Your Cloud Data Warehouse In Minutes. We reversed the traditional ETL process to create a solution that performs data integration within the cloud itself. Our solution utilizes the near-infinite storage capacity of the cloud—meaning your projects get near-infinite scalability. By working in the cloud, we reduce the complexity involved in moving large amounts of data. Process a billion rows of data in fifteen minutes—and go from launch to live in just five. Modern businesses seeking a competitive advantage must harness their data to gain better business insights. Matillion enables your data journey by extracting, migrating and transforming your data in the cloud allowing you to gain new insights and make better business decisions.
  • 43
    MarkLogic

    MarkLogic

    Progress Software

    Unlock data value, accelerate insightful decisions, and securely achieve data agility with the MarkLogic data platform. Combine your data with everything known about it (metadata) in a single service and reveal smarter decisions—faster. Get a faster, trusted way to securely connect data and metadata, create and interpret meaning, and consume high-quality contextualized data across the enterprise with the MarkLogic data platform. Know your customers in-the-moment and provide relevant and seamless experiences, reveal new insights to accelerate innovation, and easily enable governed access and compliance with a single data platform. MarkLogic provides a proven foundation to help you achieve your key business and technical outcomes—now and in the future.
  • 44
    Onehouse

    Onehouse

    Onehouse

    The only fully managed cloud data lakehouse designed to ingest from all your data sources in minutes and support all your query engines at scale, for a fraction of the cost. Ingest from databases and event streams at TB-scale in near real-time, with the simplicity of fully managed pipelines. Query your data with any engine, and support all your use cases including BI, real-time analytics, and AI/ML. Cut your costs by 50% or more compared to cloud data warehouses and ETL tools with simple usage-based pricing. Deploy in minutes without engineering overhead with a fully managed, highly optimized cloud service. Unify your data in a single source of truth and eliminate the need to copy data across data warehouses and lakes. Use the right table format for the job, with omnidirectional interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Quickly configure managed pipelines for database CDC and streaming ingestion.
  • 45
    Microsoft Foundry
    Microsoft Foundry is an end-to-end platform for building, optimizing, and governing AI apps and agents at scale. It gives developers access to more than 11,000 models — from foundational to multimodal — all available through one unified interface. With a simple, interoperable API and SDK, teams can build faster, ship confidently, and reduce integration complexity. Foundry connects seamlessly with your business systems, enabling AI solutions that understand your data and operate securely across your organization. Built-in governance, monitoring, and fleetwide controls ensure responsible AI deployment from day one. Microsoft Foundry helps companies turn AI into real business impact with speed, security, and precision.
  • 46
    Iguazio

    Iguazio

    Iguazio (Acquired by McKinsey)

    The Iguazio AI platform operationalizes and de-risks ML & GenAI applications at scale. Implement AI effectively and responsibly in your live business environments. Orchestrate and automate your AI pipelines, establish guardrails to address risk and regulation challenges, deploy your applications anywhere, and turn your AI projects into real business impact. - Operationalize Your GenAI Applications: Go from POC to a live application in production, cutting costs and time-to-market with efficient scaling, resource optimization, automation and data management applying MLOps principles. - De-Risk and Protect with GenAI Guardrails: Monitor applications in production to ensure compliance and reduce risk of data privacy breaches, bias, AI hallucinations and IP infringements.
  • 47
    Salesforce Data Cloud
    Salesforce Data Cloud is a real-time data platform designed to unify and manage customer data from multiple sources across an organization, enabling a single, comprehensive view of each customer. It allows businesses to collect, harmonize, and analyze data in real time, creating a 360-degree customer profile that can be leveraged across Salesforce’s various applications, such as Marketing Cloud, Sales Cloud, and Service Cloud. This platform enables faster, more personalized customer interactions by integrating data from online and offline channels, including CRM data, transactional data, and third-party data sources. Salesforce Data Cloud also offers advanced AI gents and analytics capabilities, helping organizations gain deeper insights into customer behavior and predict future needs. By centralizing and refining data for actionable use, Salesforce Data Cloud supports enhanced customer experiences, targeted marketing, and efficient, data-driven decision-making across departments.
  • 48
    Tecton

    Tecton

    Tecton

    Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure.
  • 49
    IBM StreamSets
    IBM® StreamSets enables users to create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments. This is why leading global companies rely on IBM StreamSets to support millions of data pipelines for modern analytics, intelligent applications and hybrid integration. Decrease data staleness and enable real-time data at scale—handling millions of records of data, across thousands of pipelines within seconds. Insulate data pipelines from change and unexpected shifts with drag-and-drop, prebuilt processors designed to automatically identify and adapt to data drift. Create streaming pipelines to ingest structured, semistructured or unstructured data and deliver it to a wide range of destinations.
  • 50
    Trino

    Trino

    Trino

    Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.