Alternatives to DataLakeHouse.io

Compare DataLakeHouse.io alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to DataLakeHouse.io in 2024. Compare features, ratings, user reviews, pricing, and more from DataLakeHouse.io competitors and alternatives in order to make an informed decision for your business.

  • 1
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven.
    Compare vs. DataLakeHouse.io View Software
    Visit Website
  • 2
    Domo

    Domo

    Domo

    Domo puts data to work for everyone so they can multiply their impact on the business. Our cloud-native data experience platform goes beyond traditional business intelligence and analytics, making data visible and actionable with user-friendly dashboards and apps. Underpinned by a secure data foundation that connects with existing cloud and legacy systems, Domo helps companies optimize critical business processes at scale and in record time to spark the bold curiosity that powers exponential business results.
    Leader badge
    Compare vs. DataLakeHouse.io View Software
    Visit Website
  • 3
    Qrvey

    Qrvey

    Qrvey

    Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less. Qrvey’s multi-tenant data lake includes: - Elasticsearch as the analytics engine - A unified data pipeline for ingestion and transformation - A complete semantic layer for simple user and data security integration Qrvey’s embedded visualizations support everything from: - standard dashboards and templates - self-service reporting - user-level personalization - individual dataset creation - data-driven workflow automation Qrvey delivers this as a self-hosted package for cloud environments. This offers the best security as your data never leaves your environment while offering a better analytics experience to users. Less time and money on analytics
    Compare vs. DataLakeHouse.io View Software
    Visit Website
  • 4
    Fivetran

    Fivetran

    Fivetran

    Fivetran is the smartest way to replicate data into your warehouse. We've built the only zero-maintenance pipeline, turning months of on-going development into a 5-minute setup. Our connectors bring data from applications and databases into one central location so that analysts can unlock profound insights about their business. Schema designs and ERDs make synced data immediately usable. Transform data into analytics-ready tables as soon as it’s loaded into your warehouse. Spend less time writing transformation code with our out-of-the-box data modeling. Connect to any git repository and manage dbt models directly from Fivetran. Develop and deliver your product with the utmost confidence in ours. Uptime and data delivery guarantees ensure your customers’ data never goes stale. Troubleshoot fast with a global team of Support Specialists.
  • 5
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store™ is a powerful and secure open-source based archive lakehouse platform designed to store, manage, and provide insights from massive volumes of data. With its compliance features and minimal footprint, it enables large-scale search, processing, and analysis of structured, unstructured, & semi-structured data across your organization. Archon Data Store combines the best features of data warehouses and data lakes into a single, simplified platform. This unified approach eliminates data silos, streamlining data engineering, analytics, data science, and machine learning workflows. Through metadata centralization, optimized data storage, and distributed computing, Archon Data Store maintains data integrity. Its common approach to data management, security, and governance helps you operate more efficiently and innovate faster. Archon Data Store provides a single platform for archiving and analyzing all your organization's data while delivering operational efficiencies.
  • 6
    Lyftrondata

    Lyftrondata

    Lyftrondata

    Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse.
  • 7
    Dremio

    Dremio

    Dremio

    Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable.
  • 8
    Sesame Software

    Sesame Software

    Sesame Software

    Sesame Software specializes in secure, efficient data integration and replication across diverse cloud, hybrid, and on-premise sources. Our patented scalability ensures comprehensive access to critical business data, facilitating a holistic view in the BI tools of your choice. This unified perspective empowers your own robust reporting and analytics, enabling your organization to regain control of your data with confidence. At Sesame Software, we understand what’s at stake when you need to move a massive amount of data between environments quickly—while keeping it protected, maintaining centralized access, and ensuring compliance with regulations. Over the past 23+ years, we’ve helped hundreds of organizations like Proctor & Gamble, Bank of America, and the U.S. government connect, move, store, and protect their data.
  • 9
    Onehouse

    Onehouse

    Onehouse

    The only fully managed cloud data lakehouse designed to ingest from all your data sources in minutes and support all your query engines at scale, for a fraction of the cost. Ingest from databases and event streams at TB-scale in near real-time, with the simplicity of fully managed pipelines. Query your data with any engine, and support all your use cases including BI, real-time analytics, and AI/ML. Cut your costs by 50% or more compared to cloud data warehouses and ETL tools with simple usage-based pricing. Deploy in minutes without engineering overhead with a fully managed, highly optimized cloud service. Unify your data in a single source of truth and eliminate the need to copy data across data warehouses and lakes. Use the right table format for the job, with omnidirectional interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Quickly configure managed pipelines for database CDC and streaming ingestion.
  • 10
    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator allows you to build on an existing DWH and make extensions and adjustments. If a good foundation is available, it is easy to build on top of it. Additionally, AnalyticsCreator’s reverse engineering methodology enables you to take code from an existing DWH application and integrate it into AC. This way, even more layers/areas can be included in the automation and thus support the expected change process even more extensively. The extension of a manually developed DWH (i.e., with an ETL/ELT tool) can quickly consume time and resources. From our experience and various studies that can be found on the web, the following rule can be derived, the longer the lifecycle, the higher the costs rise. With AnalyticsCreator, you can design your data model for your analytical Power BI application and automatically generate a multi-tier data warehouse with the appropriate loading strategy. In the process, the business logic is mapped in one place in AnalyticsCreator.
  • 11
    BryteFlow

    BryteFlow

    BryteFlow

    BryteFlow builds the most efficient automated environments for analytics ever. It converts Amazon S3 into an awesome analytics platform by leveraging the AWS ecosystem intelligently to deliver data at lightning speeds. It complements AWS Lake Formation and automates the Modern Data Architecture providing performance and productivity. You can completely automate data ingestion with BryteFlow Ingest’s simple point-and-click interface while BryteFlow XL Ingest is great for the initial full ingest for very large datasets. No coding is needed! With BryteFlow Blend you can merge data from varied sources like Oracle, SQL Server, Salesforce and SAP etc. and transform it to make it ready for Analytics and Machine Learning. BryteFlow TruData reconciles the data at the destination with the source continually or at a frequency you select. If data is missing or incomplete you get an alert so you can fix the issue easily.
  • 12
    Openbridge

    Openbridge

    Openbridge

    Uncover insights to supercharge sales growth using code-free, fully-automated data pipelines to data lakes or cloud warehouses. A flexible, standards-based platform to unify sales and marketing data for automating insights and smarter growth. Say goodbye to messy, expensive manual data downloads. Always know what you’ll pay and only pay for what you use. Fuel your tools with quick access to analytics-ready data. As certified developers, we only work with secure, official APIs. Get started quickly with data pipelines from popular sources. Pre-built, pre-transformed, and ready-to-go data pipelines. Unlock data from Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and many others. Code-free data ingestion and transformation processes allow teams to realize value from their data quickly and cost-effectively. Data is always securely stored directly in a trusted, customer-owned data destination like Databricks, Amazon Redshift, etc.
    Starting Price: $149 per month
  • 13
    Oracle Cloud Infrastructure Data Lakehouse
    A data lakehouse is a modern, open architecture that enables you to store, understand, and analyze all your data. It combines the power and richness of data warehouses with the breadth and flexibility of the most popular open source data technologies you use today. A data lakehouse can be built from the ground up on Oracle Cloud Infrastructure (OCI) to work with the latest AI frameworks and prebuilt AI services like Oracle’s language service. Data Flow is a serverless Spark service that enables our customers to focus on their Spark workloads with zero infrastructure concepts. Oracle customers want to build advanced, machine learning-based analytics over their Oracle SaaS data, or any SaaS data. Our easy- to-use data integration connectors for Oracle SaaS, make creating a lakehouse to analyze all data with your SaaS data easy and reduces time to solution.
  • 14
    BigLake

    BigLake

    Google

    BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
    Starting Price: $5 per TB
  • 15
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 16
    IBM watsonx.data
    Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more.
  • 17
    Delta Lake

    Delta Lake

    Delta Lake

    Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments.
  • 18
    Peliqan

    Peliqan

    Peliqan

    Peliqan.io is an all-in-one data platform for business teams, startups, scale-ups and IT service companies - no data engineer needed. Easily connect to databases, data warehouses and SaaS business applications. Explore and combine data in a spreadsheet UI. Business users can combine data from multiple sources, clean the data, make edits in personal copies and apply transformations. Power users can use "SQL on anything" and developers can use low-code to build interactive data apps, implement writebacks and apply machine learning. Key Features: Wide range of connectors: Integrates with over 100+ data sources and applications. Spreadsheet UI and magical SQL: Explore data in a rich spreadsheet UI. Use Magical SQL to combine and transform data. Use your favorite BI tool such as Microsoft Power BI or Metabase. Data Activation: Create data apps in minutes. Implement data alerts, distribute custom reports by email (PDF, Excel) , implement Reverse ETL flows and much more.
  • 19
    Vertica

    Vertica

    OpenText

    The Unified Analytics Warehouse. Highest performing analytics and machine learning at extreme scale. As the criteria for data warehousing continues to evolve, tech research analysts are seeing new leaders in the drive for game-changing big data analytics. Vertica powers data-driven enterprises so they can get the most out of their analytics initiatives with advanced time-series and geospatial analytics, in-database machine learning, data lake integration, user-defined extensions, cloud-optimized architecture, and more. Our Under the Hood webcast series lets you to dive deep into Vertica features – delivered by Vertica engineers and technical experts – to find out what makes it the fastest and most scalable advanced analytical database on the market. From ride sharing apps and smart agriculture to predictive maintenance and customer analytics, Vertica supports the world’s leading data-driven disruptors in their pursuit of industry and business transformation.
  • 20
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 21
    AWS Lake Formation
    AWS Lake Formation is a service that makes it easy to set up a secure data lake in days. A data lake is a centralized, curated, and secured repository that stores all your data, both in its original form and prepared for analysis. A data lake lets you break down data silos and combine different types of analytics to gain insights and guide better business decisions. Setting up and managing data lakes today involves a lot of manual, complicated, and time-consuming tasks. This work includes loading data from diverse sources, monitoring those data flows, setting up partitions, turning on encryption and managing keys, defining transformation jobs and monitoring their operation, reorganizing data into a columnar format, deduplicating redundant data, and matching linked records. Once data has been loaded into the data lake, you need to grant fine-grained access to datasets, and audit access over time across a wide range of analytics and machine learning (ML) tools and services.
  • 22
    AtScale

    AtScale

    AtScale

    AtScale helps accelerate and simplify business intelligence resulting in faster time-to-insight, better business decisions, and more ROI on your Cloud analytics investment. Eliminate repetitive data engineering tasks like curating, maintaining and delivering data for analysis. Define business definitions in one location to ensure consistent KPI reporting across BI tools. Accelerate time to insight from data while efficiently managing cloud compute costs. Leverage existing data security policies for data analytics no matter where data resides. AtScale’s Insights workbooks and models let you perform Cloud OLAP multidimensional analysis on data sets from multiple providers – with no data prep or data engineering required. We provide built-in easy to use dimensions and measures to help you quickly derive insights that you can use for business decisions.
  • 23
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 24
    Qubole

    Qubole

    Qubole

    Qubole is a simple, open, and secure Data Lake Platform for machine learning, streaming, and ad-hoc analytics. Our platform provides end-to-end services that reduce the time and effort required to run Data pipelines, Streaming Analytics, and Machine Learning workloads on any cloud. No other platform offers the openness and data workload flexibility of Qubole while lowering cloud data lake costs by over 50 percent. Qubole delivers faster access to petabytes of secure, reliable and trusted datasets of structured and unstructured data for Analytics and Machine Learning. Users conduct ETL, analytics, and AI/ML workloads efficiently in end-to-end fashion across best-of-breed open source engines, multiple formats, libraries, and languages adapted to data volume, variety, SLAs and organizational policies.
  • 25
    Dataleyk

    Dataleyk

    Dataleyk

    Dataleyk is the secure, fully-managed cloud data platform for SMBs. Our mission is to make Big Data analytics easy and accessible to all. Dataleyk is the missing link in reaching your data-driven goals. Our platform makes it quick and easy to have a stable, flexible and reliable cloud data lake with near-zero technical knowledge. Bring all of your company data from every single source, explore with SQL and visualize with your favorite BI tool or our advanced built-in graphs. Modernize your data warehousing with Dataleyk. Our state-of-the-art cloud data platform is ready to handle your scalable structured and unstructured data. Data is an asset, Dataleyk is a secure, cloud data platform that encrypts all of your data and offers on-demand data warehousing. Zero maintenance, as an objective, may not be easy to achieve. But as an initiative, it can be a driver for significant delivery improvements and transformational results.
    Starting Price: €0.1 per GB
  • 26
    IBM InfoSphere Data Replication
    IBM® InfoSphere® Data Replication provides log-based change data capture with transactional integrity to support big data integration and consolidation, warehousing and analytics initiatives at scale. It provides you the flexibility to replicate data between a variety of heterogeneous sources and targets. It also supports zero-downtime data migrations and upgrades. IBM InfoSphere Data Replication can also provide continuous availability to maintain database replicas in remote locations so that you can switch a workload to those replicas in seconds, not hours. Join the beta program to get a first look and offer input on the new on-premises-to-cloud and cloud-to-cloud data replication capabilities. See what makes you an ideal candidate for the beta program and what to expect. Sign up for the limited access IBM Data Replication beta program and collaborate with us on the new product direction.
  • 27
    Qlik Data Integration
    The Qlik Data Integration platform for managed data lakes automates the process of providing continuously updated, accurate, and trusted data sets for business analytics. Data engineers have the agility to quickly add new sources and ensure success at every step of the data lake pipeline from real-time data ingestion, to refinement, provisioning, and governance. A simple and universal solution for continually ingesting enterprise data into popular data lakes in real-time. A model-driven approach for quickly designing, building, and managing data lakes on-premises or in the cloud. Deliver a smart enterprise-scale data catalog to securely share all of your derived data sets with business users.
  • 28
    Lentiq

    Lentiq

    Lentiq

    Lentiq is a collaborative data lake as a service environment that’s built to enable small teams to do big things. Quickly run data science, machine learning and data analysis at scale in the cloud of your choice. With Lentiq, your teams can ingest data in real time and then process, clean and share it. From there, Lentiq makes it possible to build, train and share models internally. Simply put, data teams can collaborate with Lentiq and innovate with no restrictions. Data lakes are storage and processing environments, which provide ML, ETL, schema-on-read querying capabilities and so much more. Are you working on some data science magic? You definitely need a data lake. In the Post-Hadoop era, the big, centralized data lake is a thing of the past. With Lentiq, we use data pools, which are multi-cloud, interconnected mini-data lakes. They work together to give you a stable, secure and fast data science environment.
  • 29
    Mozart Data

    Mozart Data

    Mozart Data

    Mozart Data is the all-in-one modern data platform that makes it easy to consolidate, organize, and analyze data. Start making data-driven decisions by setting up a modern data stack in an hour - no engineering required.
  • 30
    e6data

    e6data

    e6data

    Limited competition due to deep barriers to entry, specialized know-how, massive capital needs, and long time-to-market. Existing platforms are indistinguishable in price, and performance reducing the incentive to switch. Migrating from one engine’s SQL dialect to another engine’s SQL involves months of effort. Truly format-neutral computing, interoperable with all major open standards. Enterprise data leaders are hit by an unprecedented explosion in computing demand for data intelligence. They are surprised to find that 10% of their heavy, compute-intensive use cases consume 80% of the cost, engineering effort and stakeholder complaints. Unfortunately, such workloads are also mission-critical and non-discretionary. e6data amplifies ROI on enterprises' existing data platforms and architecture. e6data’s truly format-neutral compute has the unique distinction of being equally efficient and performant across leading data lakehouse table formats.
  • 31
    Talend Data Fabric
    Talend Data Fabric’s suite of cloud services efficiently handles all your integration and integrity challenges — on-premises or in the cloud, any source, any endpoint. Deliver trusted data at the moment you need it — for every user, every time. Ingest and integrate data, applications, files, events and APIs from any source or endpoint to any location, on-premise and in the cloud, easier and faster with an intuitive interface and no coding. Embed quality into data management and guarantee ironclad regulatory compliance with a thoroughly collaborative, pervasive and cohesive approach to data governance. Make the most informed decisions based on high quality, trustworthy data derived from batch and real-time processing and bolstered with market-leading data cleaning and enrichment tools. Get more value from your data by making it available internally and externally. Extensive self-service capabilities make building APIs easy— improve customer engagement.
  • 32
    Infor Data Lake
    Solving today’s enterprise and industry challenges requires big data. The ability to capture data from across your enterprise—whether generated by disparate applications, people, or IoT infrastructure–offers tremendous potential. Infor’s Data Lake tools deliver schema-on-read intelligence along with a fast, flexible data consumption framework to enable new ways of making key decisions. With leveraged access to your entire Infor ecosystem, you can start capturing and delivering big data to power your next generation analytics and machine learning strategies. Infinitely scalable, the Infor Data Lake provides a unified repository for capturing all of your enterprise data. Grow with your insights and investments, ingest more content for better informed decisions, improve your analytics profiles, and provide rich data sets to build more powerful machine learning processes.
  • 33
    Snowflake

    Snowflake

    Snowflake

    Your cloud data platform. Secure and easy access to any data with infinite scalability. Get all the insights from all your data by all your users, with the instant and near-infinite performance, concurrency and scale your organization requires. Seamlessly share and consume shared data to collaborate across your organization, and beyond, to solve your toughest business problems in real time. Boost the productivity of your data professionals and shorten your time to value in order to deliver modern and integrated data solutions swiftly from anywhere in your organization. Whether you’re moving data into Snowflake or extracting insight out of Snowflake, our technology partners and system integrators will help you deploy Snowflake for your success.
    Starting Price: $40.00 per month
  • 34
    Varada

    Varada

    Varada

    Varada’s dynamic and adaptive big data indexing solution enables to balance performance and cost with zero data-ops. Varada’s unique big data indexing technology serves as a smart acceleration layer on your data lake, which remains the single source of truth, and runs in the customer cloud environment (VPC). Varada enables data teams to democratize data by operationalizing the entire data lake while ensuring interactive performance, without the need to move data, model or manually optimize. Our secret sauce is our ability to automatically and dynamically index relevant data, at the structure and granularity of the source. Varada enables any query to meet continuously evolving performance and concurrency requirements for users and analytics API calls, while keeping costs predictable and under control. The platform seamlessly chooses which queries to accelerate and which data to index. Varada elastically adjusts the cluster to meet demand and optimize cost and performance.
  • 35
    FutureAnalytica

    FutureAnalytica

    FutureAnalytica

    Ours is the world’s first & only end-to-end platform for all your AI-powered innovation needs — right from data cleansing & structuring, to creating & deploying advanced data-science models, to infusing advanced analytics algorithms with built-in Recommendation AI, to deducing the outcomes with easy-to-deduce visualization dashboards, as well as Explainable AI to backtrack how the outcomes were derived, our no-code AI platform can do it all! Our platform offers a holistic, seamless data science experience. With key features like a robust Data Lakehouse, a unique AI Studio, a comprehensive AI Marketplace, and a world-class data-science support team (on a need basis), FutureAnalytica is geared to reduce your time, efforts & costs across your data-science & AI journey. Initiate discussions with the leadership, followed by a quick technology assessment in 1–3 days. Build ready-to-integrate AI solutions using FA's fully automated data science & AI platform in 10–18 days.
  • 36
    NewEvol

    NewEvol

    Sattrix Software Solutions

    NewEvol is the technologically advanced product suite that uses data science for advanced analytics to identify abnormalities in the data itself. Supported by visualization, rule-based alerting, automation, and responses, NewEvol becomes a more compiling proposition for any small to large enterprise. Machine Learning (ML) and security intelligence feed makes NewEvol a more robust system to cater to challenging business demands. NewEvol Data Lake is super easy to deploy and manage. You don’t require a team of expert data administrators. As your company’s data need grows, it automatically scales and reallocates resources accordingly. NewEvol Data Lake has extensive data ingestion to perform enrichment across multiple sources. It helps you ingest data from multiple formats such as delimited, JSON, XML, PCAP, Syslog, etc. It offers enrichment with the help of a best-of-breed contextually aware event analytics model.
  • 37
    Utilihive

    Utilihive

    Greenbird Integration Technology

    Utilihive is a cloud-native big data integration platform, purpose-built for the digital data-driven utility, offered as a managed service (SaaS). Utilihive is the leading Enterprise-iPaaS (iPaaS) that is purpose-built for energy and utility usage scenarios. Utilihive provides both the technical infrastructure platform (connectivity, integration, data ingestion, data lake, API management) and pre-configured integration content or accelerators (connectors, data flows, orchestrations, utility data model, energy data services, monitoring and reporting dashboards) to speed up the delivery of innovative data driven services and simplify operations. Utilities play a vital role towards achieving the Sustainable Development Goals and now have the opportunity to build universal platforms to facilitate the data economy in a new world including renewable energy. Seamless access to data is crucial to accelerate the digital transformation.
  • 38
    UnifyApps

    UnifyApps

    UnifyApps

    Reduce fragmented systems & bridge data silos by enabling your teams to develop complex applications, automate workflows and build data pipelines. Automate complex business processes across applications within minutes. Build and deploy customer-facing and internal applications. Use from a wide range of pre-built rich components. Enterprise-grade security and governance and robust debugging and change management. Build enterprise-grade applications 10x faster without writing code. Automate complex business processes across applications within minutes. Powered by enterprise-grade reliability features like caching, rate limiting, and circuit breakers. Build custom integrations in less than a day with connector SDK. Real-time data replication from any source to the destination system. Instantly move data across applications, data warehouses, or data lakes. Enable preload transformations, and automated schema mapping.
  • 39
    Cortex Data Lake
    Collect, transform and integrate your enterprise’s security data to enable Palo Alto Networks solutions. Radically simplify security operations by collecting, transforming and integrating your enterprise’s security data. Facilitate AI and machine learning with access to rich data at cloud native scale. Significantly improve detection accuracy with trillions of multi-source artifacts. Cortex XDR™ is the industry’s only prevention, detection, and response platform that runs on fully integrated endpoint, network and cloud data. Prisma™ Access protects your applications, remote networks and mobile users in a consistent manner, wherever they are. A cloud-delivered architecture connects all users to all applications, whether they’re at headquarters, branch offices or on the road. The combination of Cortex™ Data Lake and Panorama™ management delivers an economical, cloud-based logging solution for Palo Alto Networks Next-Generation Firewalls. Zero hardware, cloud scale, available anywhere.
  • 40
    PoINT Data Replicator

    PoINT Data Replicator

    PoINT Software & Systems

    Today, organizations are typically storing unstructured data in file systems and increasingly in object and cloud storage. Cloud and object storage have numerous advantages, particularly with regard to inactive data. This leads to the requirement to migrate or replicate files (e.g. from legacy NAS) to cloud or object storage. More and more data is stored in cloud and object storage. This has created an underestimated security risk. In most cases, data stored in the cloud or in on-premises object storage is not backed up, as it is believed to be secure. This assumption is negligent and risky. High availability and redundancy as offered by cloud services and object storage products do not protect against human error, ransomware, malware, or technology failure. Thus, also cloud and object data need backup or replication, most appropriately on a separate storage technology, at a different location and in the original format as stored in the cloud and object storage.
  • 41
    Zaloni Arena
    End-to-end DataOps built on an agile platform that improves and safeguards your data assets. Arena is the premier augmented data management platform. Our active data catalog enables self-service data enrichment and consumption to quickly control complex data environments. Customizable workflows that increase the accuracy and reliability of every data set. Use machine-learning to identify and align master data assets for better data decisioning. Complete lineage with detailed visualizations alongside masking and tokenization for superior security. We make data management easy. Arena catalogs your data, wherever it is and our extensible connections enable analytics to happen across your preferred tools. Conquer data sprawl challenges: Our software drives business and analytics success while providing the controls and extensibility needed across today’s decentralized, multi-cloud data complexity.
  • 42
    Oracle Autonomous Data Warehouse
    Oracle Autonomous Data Warehouse is a cloud data warehouse service that eliminates all the complexities of operating a data warehouse, dw cloud, data warehouse center, securing data, and developing data-driven applications. It automates provisioning, configuring, securing, tuning, scaling, and backing up of the data warehouse. It includes tools for self-service data loading, data transformations, business models, automatic insights, and built-in converged database capabilities that enable simpler queries across multiple data types and machine learning analysis. It’s available in both the Oracle public cloud and customers' data centers with Oracle Cloud@Customer. Detailed analysis by industry expert DSC illustrates why Oracle Autonomous Data Warehouse is a better pick for the majority of global organizations. Learn about applications and tools that are compatible with Autonomous Data Warehouse.
  • 43
    Azure Synapse Analytics
    Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
  • 44
    Data Lake on AWS
    Many Amazon Web Services (AWS) customers require a data storage and analytics solution that offers more agility and flexibility than traditional data management systems. A data lake is a new and increasingly popular way to store and analyze data because it allows companies to manage multiple data types from a wide variety of sources, and store this data, structured and unstructured, in a centralized repository. The AWS Cloud provides many of the building blocks required to help customers implement a secure, flexible, and cost-effective data lake. These include AWS managed services that help ingest, store, find, process, and analyze both structured and unstructured data. To support our customers as they build data lakes, AWS offers the data lake solution, which is an automated reference implementation that deploys a highly available, cost-effective data lake architecture on the AWS Cloud along with a user-friendly console for searching and requesting datasets.
  • 45
    ELCA Smart Data Lake Builder
    Classical Data Lakes are often reduced to basic but cheap raw data storage, neglecting significant aspects like transformation, data quality and security. These topics are left to data scientists, who end up spending up to 80% of their time acquiring, understanding and cleaning data before they can start using their core competencies. In addition, classical Data Lakes are often implemented by separate departments using different standards and tools, which makes it harder to implement comprehensive analytical use cases. Smart Data Lakes solve these various issues by providing architectural and methodical guidelines, together with an efficient tool to build a strong high-quality data foundation. Smart Data Lakes are at the core of any modern analytics platform. Their structure easily integrates prevalent Data Science tools and open source technologies, as well as AI and ML. Their storage is cheap and scalable, supporting both unstructured data and complex data structures.
  • 46
    Azure Data Lake
    Azure Data Lake includes all the capabilities required to make it easy for developers, data scientists, and analysts to store data of any size, shape, and speed, and do all types of processing and analytics across platforms and languages. It removes the complexities of ingesting and storing all of your data while making it faster to get up and running with batch, streaming, and interactive analytics. Azure Data Lake works with existing IT investments for identity, management, and security for simplified data management and governance. It also integrates seamlessly with operational stores and data warehouses so you can extend current data applications. We’ve drawn on the experience of working with enterprise customers and running some of the largest scale processing and analytics in the world for Microsoft businesses like Office 365, Xbox Live, Azure, Windows, Bing, and Skype. Azure Data Lake solves many of the productivity and scalability challenges that prevent you from maximizing the
  • 47
    IBM Db2 Warehouse
    IBM® Db2® Warehouse provides a client-managed, preconfigured data warehouse that runs in private clouds, virtual private clouds and other container-supported infrastructures. It is designed to be the ideal hybrid cloud solution when you must maintain control of your data but want cloud-like flexibility. With built-in machine learning, automated scaling, built-in analytics, and SMP and MPP processing, Db2 Warehouse enables you to bring AI to your business faster and easier. Deploy a pre-configured data warehouse in minutes on your supported infrastructure of choice with elastic scaling for easier updates and upgrades. Apply in-database analytics where the data resides, allowing enterprise AI to operate faster and more efficiently. Write your application once and move that workload to the right location, whether public cloud, private cloud or on-premises — with minimal or no changes required.
  • 48
    Qlik Compose
    Qlik Compose for Data Warehouses (formerly Attunity Compose for Data Warehouses) provides a modern approach by automating and optimizing data warehouse creation and operation. Qlik Compose automates designing the warehouse, generating ETL code, and quickly applying updates, all whilst leveraging best practices and proven design patterns. Qlik Compose for Data Warehouses dramatically reduces the time, cost and risk of BI projects, whether on-premises or in the cloud. Qlik Compose for Data Lakes (formerly Attunity Compose for Data Lakes) automates your data pipelines to create analytics-ready data sets. By automating data ingestion, schema creation, and continual updates, organizations realize faster time-to-value from their existing data lake investments.
  • 49
    Upsolver

    Upsolver

    Upsolver

    Upsolver makes it incredibly simple to build a governed data lake and to manage, integrate and prepare streaming data for analysis. Define pipelines using only SQL on auto-generated schema-on-read. Easy visual IDE to accelerate building pipelines. Add Upserts and Deletes to data lake tables. Blend streaming and large-scale batch data. Automated schema evolution and reprocessing from previous state. Automatic orchestration of pipelines (no DAGs). Fully-managed execution at scale. Strong consistency guarantee over object storage. Near-zero maintenance overhead for analytics-ready data. Built-in hygiene for data lake tables including columnar formats, partitioning, compaction and vacuuming. 100,000 events per second (billions daily) at low cost. Continuous lock-free compaction to avoid “small files” problem. Parquet-based tables for fast queries.
  • 50
    IBM Netezza Performance Server
    100% compatible with Netezza. Single command-line upgrade path. Available on premises, on cloud or hybrid. IBM® Netezza® Performance Server for IBM Cloud Pak® for Data is an advanced data warehouse and analytics platform available both on premises and on cloud. With enhancements to in-database analytics capabilities, this next generation of Netezza enables you to do data science and machine learning with data volumes scaling into the petabytes. Failure detection and fast failure recovery. Single command-line upgrade to existing systems. Ability to query many systems as one. Choose the data center or availability zone closest to you, set the number of compute units and amount of storage required to run, and go. IBM® Netezza® Performance Server for IBM Cloud Pak® for Data is available on IBM Cloud®, Amazon Web Services (AWS) and Microsoft Azure. Deployable on a private cloud, Netezza is powered by IBM Cloud Pak for Data System.