Alternatives to CompactifAI

Compare CompactifAI alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to CompactifAI in 2026. Compare features, ratings, user reviews, pricing, and more from CompactifAI competitors and alternatives in order to make an informed decision for your business.

  • 1
    Dragonfly

    Dragonfly

    DragonflyDB

    Dragonfly is a drop-in Redis replacement that cuts costs and boosts performance. Designed to fully utilize the power of modern cloud hardware and deliver on the data demands of modern applications, Dragonfly frees developers from the limits of traditional in-memory data stores. The power of modern cloud hardware can never be realized with legacy software. Dragonfly is optimized for modern cloud computing, delivering 25x more throughput and 12x lower snapshotting latency when compared to legacy in-memory data stores like Redis, making it easy to deliver the real-time experience your customers expect. Scaling Redis workloads is expensive due to their inefficient, single-threaded model. Dragonfly is far more compute and memory efficient, resulting in up to 80% lower infrastructure costs. Dragonfly scales vertically first, only requiring clustering at an extremely high scale. This results in a far simpler operational model and a more reliable system.
    Compare vs. CompactifAI View Software
    Visit Website
  • 2
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
  • 3
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 4
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 5
    TranslateGemma
    TranslateGemma is a new suite of open machine translation models from Google built on the Gemma 3 foundation that lets people and systems communicate across 55 languages with high-quality AI translation while maintaining efficiency and broad deployment flexibility. Available in 4 B, 12 B, and 27 B parameter sizes, TranslateGemma distills advanced multilingual capabilities into compact models that can run on mobile devices, consumer laptops, local machines, or cloud hardware without sacrificing accuracy or performance; technical evaluations show the 12 B version can outperform larger baseline models with lower compute demands. The models were developed through a specialized two-stage fine-tuning process combining high-quality human and synthetic translation data with reinforcement learning to optimize translation quality across diverse language families.
  • 6
    Tensormesh

    Tensormesh

    Tensormesh

    Tensormesh is a caching layer built specifically for large-language-model inference workloads that enables organizations to reuse intermediate computations, drastically reduce GPU usage, and accelerate time-to-first-token and latency. It works by capturing and reusing key-value cache states that are normally thrown away after each inference, thereby cutting redundant compute and delivering “up to 10x faster inference” while substantially lowering GPU load. It supports deployments in public cloud or on-premises, with full observability and enterprise-grade control, SDKs/APIs, and dashboards for integration into existing inference pipelines, and compatibility with inference engines such as vLLM out of the box. Tensormesh emphasizes performance at scale, including sub-millisecond repeated queries, while optimizing every layer of inference from caching through computation.
  • 7
    Classiq

    Classiq

    Classiq

    Classiq, a Fast Company ‘Next Big Thing in Tech 2025’ award winner, is the leading quantum computing software company, providing the technology that makes it practical for enterprises and researchers to access and harness quantum computing. Classiq’s platform transforms high-level functional models into optimized, hardware-ready quantum circuits automatically. This enables teams to develop algorithms faster, optimize them for cost and performance, and make quantum applications usable sooner, without deep hardware expertise. Through partnerships with global leaders in quantum cloud computing, including major hyperscalers and hardware providers, Classiq ensures that customers can design once and deploy anywhere. The synthesis technology and memory optimization tools allow organizations to produce scalable, efficient quantum code that accelerates research and reduces execution cost.
  • 8
    Parasail

    Parasail

    Parasail

    Parasail is an AI deployment network offering scalable, cost-efficient access to high-performance GPUs for AI workloads. It provides three primary services, serverless endpoints for real-time inference, Dedicated instances for private model deployments, and Batch processing for large-scale tasks. Users can deploy open source models like DeepSeek R1, LLaMA, and Qwen, or bring their own, with the platform's permutation engine matching workloads to optimal hardware, including NVIDIA's H100, H200, A100, and 4090 GPUs. Parasail emphasizes rapid deployment, with the ability to scale from a single GPU to clusters within minutes, and offers significant cost savings, claiming up to 30x cheaper compute compared to legacy cloud providers. It supports day-zero availability for new models and provides a self-service interface without long-term contracts or vendor lock-in.
    Starting Price: $0.80 per million tokens
  • 9
    Together AI

    Together AI

    Together AI

    Together AI provides an AI-native cloud platform built to accelerate training, fine-tuning, and inference on high-performance GPU clusters. Engineered for massive scale, the platform supports workloads that process trillions of tokens without performance drops. Together AI delivers industry-leading cost efficiency by optimizing hardware, scheduling, and inference techniques, lowering total cost of ownership for demanding AI workloads. With deep research expertise, the company brings cutting-edge models, hardware, and runtime innovations—like ATLAS runtime-learning accelerators—directly into production environments. Its full-stack ecosystem includes a model library, inference APIs, fine-tuning capabilities, pre-training support, and instant GPU clusters. Designed for AI-native teams, Together AI helps organizations build and deploy advanced applications faster and more affordably.
    Starting Price: $0.0001 per 1k tokens
  • 10
    Latent AI

    Latent AI

    Latent AI

    We take the hard work out of AI processing on the edge. The Latent AI Efficient Inference Platform (LEIP) enables adaptive AI at the edge by optimizing for compute, energy and memory without requiring changes to existing AI/ML infrastructure and frameworks. LEIP is a modular, fully-integrated workflow designed to train, quantize, adapt and deploy edge AI neural networks. LEIP is a modular, fully-integrated workflow designed to train, quantize and deploy edge AI neural networks. Latent AI believes in a vibrant and sustainable future driven by the power of AI and the promise of edge computing. Our mission is to deliver on the vast potential of edge AI with solutions that are efficient, practical, and useful. Latent AI helps a variety of federal and commercial organizations gain the most from their edge AI with an automated edge MLOps pipeline that creates ultra-efficient, compressed, and secured edge models at scale while also removing all maintenance and configuration concerns
  • 11
    Flower

    Flower

    Flower

    Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.
  • 12
    NetsPresso

    NetsPresso

    Nota AI

    NetsPresso is a hardware-aware AI model optimization platform. NetsPresso powers on-device AI across industries, and it's the ultimate platform for hardware-aware AI model development. Lightweight models of LLaMA and Vicuna enable efficient text generation. BK-SDM is a lightweight version of Stable Diffusion models. VLMs combine visual data with natural language understanding. NetsPresso resolves Cloud and server-based AI solutions-related issues, such as limited network, excessive cost, and privacy breaches. NetsPresso is an automatic model compression platform that downsizes computer vision models to a size small enough to be deployed independently on the smaller edge and low-specification devices. Optimization of target models being key, the platform combines a variety of compression methods which enables it to downsize AI models without causing performance degradation.
  • 13
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 14
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
  • 15
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you.
  • 16
    Bayesforge

    Bayesforge

    Quantum Programming Studio

    Bayesforge™ is a Linux machine image that curates the very best open source software for the data scientist who needs advanced analytical tools, as well as for quantum computing and computational mathematics practitioners who seek to work with one of the major QC frameworks. The image combines common machine learning frameworks, such as PyTorch and TensorFlow, with open source software from D-Wave, Rigetti as well as the IBM Quantum Experience and Google's new quantum computing language Cirq, as well as other advanced QC frameworks. For instance our quantum fog modeling framework, and our quantum compiler Qubiter which can cross-compile to all major architectures. All software is made accessible through the Jupyter WebUI which, due to its modular architecture, allows the user to code in Python, R, and Octave.
  • 17
    QSimulate

    QSimulate

    QSimulate

    QSimulate offers a suite of quantum simulation platforms that leverage quantum mechanics to solve complex, industrial-scale problems in life sciences and materials science. The QSP Life platform provides unique quantum-powered methods for drug discovery and optimization, enabling first-of-a-kind quantum simulations of ligand-protein interactions applicable throughout the computational drug discovery process. The QUELO platform performs hybrid quantum/classical free energy calculations, offering users the ability to run relative free energy calculations using the free energy perturbation (FEP) approach. Additionally, QSimulate's technology enables groundbreaking advances in quantum mechanics/molecular mechanics (QM/MM) simulations for large protein modeling. For materials science, the QSP Materials platform democratizes quantum mechanical simulations, allowing experimentalists to automate complex workflows without the need for specialization.
  • 18
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 19
    Cerebras-GPT
    State-of-the-art language models are extremely challenging to train; they require huge compute budgets, complex distributed compute techniques and deep ML expertise. As a result, few organizations train large language models (LLMs) from scratch. And increasingly those that have the resources and expertise are not open sourcing the results, marking a significant change from even a few months back. At Cerebras, we believe in fostering open access to the most advanced models. With this in mind, we are proud to announce the release to the open source community of Cerebras-GPT, a family of seven GPT models ranging from 111 million to 13 billion parameters. Trained using the Chinchilla formula, these models provide the highest accuracy for a given compute budget. Cerebras-GPT has faster training times, lower training costs, and consumes less energy than any publicly available model to date.
  • 20
    KServe

    KServe

    KServe

    Highly scalable and standards-based model inference platform on Kubernetes for trusted AI. KServe is a standard model inference platform on Kubernetes, built for highly scalable use cases. Provides performant, standardized inference protocol across ML frameworks. Support modern serverless inference workload with autoscaling including a scale to zero on GPU. Provides high scalability, density packing, and intelligent routing using ModelMesh. Simple and pluggable production serving for production ML serving including prediction, pre/post-processing, monitoring, and explainability. Advanced deployments with the canary rollout, experiments, ensembles, and transformers. ModelMesh is designed for high-scale, high-density, and frequently-changing model use cases. ModelMesh intelligently loads and unloads AI models to and from memory to strike an intelligent trade-off between responsiveness to users and computational footprint.
  • 21
    Runware

    Runware

    Runware

    ​Runware provides ultra-fast, cost-effective generative media solutions powered by custom hardware and renewable energy. Their Sonic Inference Engine delivers sub-second inference times across models like SD1.5, SDXL, SD3, and FLUX, enabling real-time AI applications without compromising quality. It supports over 300,000 models, including LoRAs, ControlNets, and IP-Adapters, allowing seamless integration and instant model switching. Advanced features include text-to-image and image-to-image generation, inpainting, outpainting, background removal, upscaling, and integration with technologies like ControlNet and AnimateDiff. Runware's infrastructure is powered entirely by renewable energy, saving approximately 60 metric tonnes of CO₂ monthly. The flexible API supports both WebSockets and REST, facilitating easy integration without the need for expensive hardware or AI expertise.
    Starting Price: $0.0006 per image
  • 22
    LiteRT

    LiteRT

    Google

    LiteRT (Lite Runtime), formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. It enables developers to deploy machine learning models across various platforms and microcontrollers. LiteRT supports models from TensorFlow, PyTorch, and JAX, converting them into the efficient FlatBuffers format (.tflite) for optimized on-device inference. Key features include low latency, enhanced privacy by processing data locally, reduced model and binary sizes, and efficient power consumption. The runtime offers SDKs in multiple languages such as Java/Kotlin, Swift, Objective-C, C++, and Python, facilitating integration into diverse applications. Hardware acceleration is achieved through delegates like GPU and iOS Core ML, improving performance on supported devices. LiteRT Next, currently in alpha, introduces a new set of APIs that streamline on-device hardware acceleration.
  • 23
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • 24
    Viridis

    Viridis

    Viridis

    Energy Efficiency Viridis energy & utilities management solutions can cut your company’s energy matrix costs by up to 15% or more. Highlights. Gradually evolve your management model Upon deployment the Viridis solution adapts to the company’s current management model. Over time Viridis promotes a gradual evolution of management practices, helping the company achieve and maintain new levels of efficiency. Multiple energy inputs. Viridis manages all inputs used by clients: electric energy, solid, liquid and gaseous fuels, water, atmospheric gases, and more. Lower application TCO. Viridis replaces a range of existing standalone applications in the client's IT landscape, reducing the total cost of ownership of IT systems. Improve the energy efficiency of your operations. Market pressure for more operational efficiency and challenges associated with energy supplies make energy efficiency and utilities increasingly relevant in industrial companies at the highest levels of management
  • 25
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
  • 26
    BitNet

    BitNet

    Microsoft

    The BitNet b1.58 2B4T is a cutting-edge 1-bit Large Language Model (LLM) developed by Microsoft, designed to enhance computational efficiency while maintaining high performance. This model, built with approximately 2 billion parameters and trained on 4 trillion tokens, uses innovative quantization techniques to optimize memory usage, energy consumption, and latency. The platform supports multiple modalities and is particularly valuable for applications in AI-powered text generation, offering substantial efficiency gains compared to full-precision models.
  • 27
    Mu

    Mu

    Microsoft

    Mu is a 330-million-parameter encoder–decoder language model designed to power the agent in Windows settings by mapping natural-language queries to Settings function calls, running fully on-device via NPUs at over 100 tokens per second while maintaining high accuracy. Drawing on Phi Silica optimizations, Mu’s encoder–decoder architecture reuses a fixed-length latent representation to cut computation and memory overhead, yielding 47 percent lower first-token latency and 4.7× higher decoding speed on Qualcomm Hexagon NPUs compared to similar decoder-only models. Hardware-aware tuning, including a 2/3–1/3 encoder–decoder parameter split, weight sharing between input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, enables fast inference at over 200 tokens per second on devices like Surface Laptop 7 and sub-500 ms response times for settings queries.
  • 28
    DeepSeek-V2

    DeepSeek-V2

    DeepSeek

    DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.
  • 29
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 30
    Lumino

    Lumino

    Lumino

    The first integrated hardware and software compute protocol to train and fine-tune your AI models. Lower your training costs by up to 80%. Deploy in seconds with open-source model templates or bring your own model. Seamlessly debug containers with access to GPU, CPU, Memory, and other metrics. You can monitor logs in real time. Trace all models and training sets with cryptographic verified proofs for complete accountability. Control the entire training workflow with a few simple commands. Earn block rewards for adding your computer to the network. Track key metrics such as connectivity and uptime.
  • 31
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 32
    Intel Gaudi Software
    Intel’s Gaudi software gives developers access to a comprehensive set of tools, libraries, containers, model references, and documentation that support creation, migration, optimization, and deployment of AI models on Intel® Gaudi® accelerators. It helps streamline every stage of AI development including training, fine-tuning, debugging, profiling, and performance optimization for generative AI (GenAI) and large language models (LLMs) on Gaudi hardware, whether in data centers or cloud environments. It includes up-to-date documentation with code samples, best practices, API references, and guides for efficient use of Gaudi solutions such as Gaudi 2 and Gaudi 3, and it integrates with popular frameworks and tools to support model portability and scalability. Users can access performance data to review training and inference benchmarks, utilize community and support resources, and take advantage of containers and libraries tailored to high-performance AI workloads.
  • 33
    NVIDIA FLARE
    NVIDIA FLARE (Federated Learning Application Runtime Environment) is an open source, extensible SDK designed to facilitate federated learning across diverse industries, including healthcare, finance, and automotive. It enables secure, privacy-preserving AI model training by allowing multiple parties to collaboratively train models without sharing raw data. FLARE supports various machine learning frameworks such as PyTorch, TensorFlow, RAPIDS, and XGBoost, making it adaptable to existing workflows. FLARE's componentized architecture allows for customization and scalability, supporting both horizontal and vertical federated learning. It is suitable for applications requiring data privacy and regulatory compliance, such as medical imaging and financial analytics. It is available for download via the NVIDIA NVFlare GitHub repository and PyPi.
  • 34
    GPU.ai

    GPU.ai

    GPU.ai

    GPU.ai is a cloud platform specialized in GPU infrastructure tailored to AI workloads. It offers two main products: GPU Instance, letting users launch compute instances with recent NVIDIA GPUs (for tasks like training, fine-tuning, and inference), and model inference, where you upload your pre-built models and GPU.ai handles deployment. The hardware options include H200s and A100s. It also supports custom requests via sales, with fast responses (within ~15 minutes) for more specialized GPU or workflow needs.
    Starting Price: $2.29 per hour
  • 35
    Rigetti Quantum Cloud Services (QCS)
    We make it possible for everyone to think bigger, create faster, and see further. By infusing AI and machine learning, our quantum solutions give you the power to solve the world’s most important and pressing problems. Thermodynamics sparked the Industrial revolution. Electromagnetism ushered in the information age, now, quantum computers are harnessing the unique information processing capability of quantum mechanics to exponentially reduce the time and energy needed for high-impact computing. With the first paradigm-shifting advance since the integrated circuit, quantum computing is poised to transform every global market. The gap between first movers and fast followers will be difficult to overcome.
  • 36
    TensorBoard

    TensorBoard

    Tensorflow

    TensorBoard is TensorFlow's comprehensive visualization toolkit designed to facilitate machine learning experimentation. It enables users to track and visualize metrics such as loss and accuracy, visualize the model graph (operations and layers), view histograms of weights, biases, or other tensors as they change over time, project embeddings to a lower-dimensional space, and display images, text, and audio data. Additionally, TensorBoard offers profiling capabilities to optimize TensorFlow programs. These features collectively provide a suite of tools to understand, debug, and optimize TensorFlow programs, enhancing the machine learning workflow. In machine learning, to improve something you often need to be able to measure it. TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics, visualizing the model graph, and projecting embeddings to a lower dimensional space.
  • 37
    Arctic Embed 2.0
    Snowflake's Arctic Embed 2.0 introduces multilingual capabilities to its text embedding models, enhancing global-scale retrieval without compromising English performance or scalability. Building upon the robust foundation of previous releases, Arctic Embed 2.0 supports multiple languages, enabling developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. The model leverages Matryoshka Representation Learning (MRL) for efficient embedding storage, allowing for significant compression with minimal quality degradation. This advancement ensures that enterprises can handle demanding workloads such as training large-scale models, fine-tuning, real-time inference, and high-performance computing tasks across diverse languages and regions.
    Starting Price: $2 per credit
  • 38
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 39
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 40
    Qualcomm AI Inference Suite
    The Qualcomm AI Inference Suite is a comprehensive software platform designed to streamline the deployment of AI models and applications across cloud and on-premises environments. It offers seamless one-click deployment, allowing users to easily integrate their own models, including generative AI, computer vision, and natural language processing, and build custom applications using common frameworks. The suite supports a wide range of AI use cases such as chatbots, AI agents, retrieval-augmented generation (RAG), summarization, image generation, real-time translation, transcription, and code development. Powered by Qualcomm Cloud AI accelerators, it ensures top performance and cost efficiency through embedded optimization techniques and state-of-the-art models. It is designed with high availability and strict data privacy in mind, ensuring that model inputs and outputs are not stored, thus providing enterprise-grade security.
  • 41
    Kubeflow

    Kubeflow

    Kubeflow

    The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. Kubeflow provides a custom TensorFlow training job operator that you can use to train your ML model. In particular, Kubeflow's job operator can handle distributed TensorFlow training jobs. Configure the training controller to use CPUs or GPUs and to suit various cluster sizes. Kubeflow includes services to create and manage interactive Jupyter notebooks. You can customize your notebook deployment and your compute resources to suit your data science needs. Experiment with your workflows locally, then deploy them to a cloud when you're ready.
  • 42
    FramePack AI

    FramePack AI

    FramePack AI

    FramePack AI revolutionizes video creation by enabling the generation of long, high-quality videos on consumer GPUs with just 6 GB of VRAM, using smart frame compression and bi-directional sampling to maintain constant computational load regardless of video length while avoiding drift and preserving visual fidelity. Key innovations include fixed context length to compress frames by importance, progressive frame compression for optimal memory use, and anti-drifting sampling to prevent error accumulation. Fully compatible with existing pretrained video diffusion models, FramePack accelerates training with large batch support and integrates seamlessly via fine-tuning under an Apache 2.0 open source license. Its user-friendly workflow lets creators upload an image or initial frame, set preferences for length, frame rate, and style, generate frames progressively, and preview or download final animations in real time.
    Starting Price: $29.99 per month
  • 43
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 44
    FriendliAI

    FriendliAI

    FriendliAI

    FriendliAI is a generative AI infrastructure platform that offers fast, efficient, and reliable inference solutions for production environments. It provides a suite of tools and services designed to optimize the deployment and serving of large language models (LLMs) and other generative AI workloads at scale. Key offerings include Friendli Endpoints, which allow users to build and serve custom generative AI models, saving GPU costs and accelerating AI inference. It supports seamless integration with popular open source models from the Hugging Face Hub, enabling lightning-fast, high-performance inference. FriendliAI's cutting-edge technologies, such as Iteration Batching, Friendli DNN Library, Friendli TCache, and Native Quantization, contribute to significant cost savings (50–90%), reduced GPU requirements (6× fewer GPUs), higher throughput (10.7×), and lower latency (6.2×).
    Starting Price: $5.9 per hour
  • 45
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
  • 46
    LMCache

    LMCache

    LMCache

    LMCache is an open source Knowledge Delivery Network (KDN) designed as a caching layer for large language model serving that accelerates inference by reusing KV (key-value) caches across repeated or overlapping computations. It enables fast prompt caching, allowing LLMs to “prefill” recurring text only once and then reuse those stored KV caches, even in non-prefix positions, across multiple serving instances. This approach reduces time to first token, saves GPU cycles, and increases throughput in scenarios such as multi-round question answering or retrieval augmented generation. LMCache supports KV cache offloading (moving cache from GPU to CPU or disk), cache sharing across instances, and disaggregated prefill, which separates the prefill and decoding phases for resource efficiency. It is compatible with inference engines like vLLM and TGI and supports compressed storage, blending techniques to merge caches, and multiple backend storage options.
  • 47
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 48
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 49
    Decide AI

    Decide AI

    Decide AI

    DecideAI is a decentralized AI ecosystem built around three core components that offer a framework for privacy-preserving data sharing, annotation, model training, and continuous improvement using techniques like RLHF and DPO. Decide ID is a zero-knowledge proof-based identity system that verifies contributors’ authenticity and reputation while preserving privacy through techniques like 3D face scans and liveness checks. Decide Cortex provides access to specialized, high-quality LLMs and curated datasets generated through the protocol, enabling clients and developers to adopt or tailor models without starting from scratch. The platform is designed to support secure, verifiable contributions of proprietary or domain-specific data, incentivize long-term participation via its native DCD token, and reduce reliance on large centralized AI providers by enabling on-chain or hybrid model hosting.
  • 50
    NVIDIA Confidential Computing
    NVIDIA Confidential Computing secures data in use, protecting AI models and workloads as they execute, by leveraging hardware-based trusted execution environments built into NVIDIA Hopper and Blackwell architectures and supported platforms. It enables enterprises to deploy AI training and inference, whether on-premises, in the cloud, or at the edge, with no changes to model code, while ensuring the confidentiality and integrity of both data and models. Key features include zero-trust isolation of workloads from the host OS or hypervisor, device attestation to verify that only legitimate NVIDIA hardware is running the code, and full compatibility with shared or remote infrastructure for ISVs, enterprises, and multi-tenant environments. By safeguarding proprietary AI models, inputs, weights, and inference activities, NVIDIA Confidential Computing enables high-performance AI without compromising security or performance.