voyage-4-large
The Voyage 4 model family from Voyage AI is a new generation of text embedding models designed to produce high-quality semantic vectors with an industry-first shared embedding space that lets different models in the series generate compatible embeddings so developers can mix and match models for document and query embedding to optimize accuracy, latency, and cost trade-offs. It includes voyage-4-large (a flagship model using a mixture-of-experts architecture delivering state-of-the-art retrieval accuracy at about 40% lower serving cost than comparable dense models), voyage-4 (balancing quality and efficiency), voyage-4-lite (high-quality embeddings with fewer parameters and lower compute cost), and the open-weight voyage-4-nano (ideal for local development and prototyping with an Apache 2.0 license). All four models in the series operate in a single shared embedding space, so embeddings generated by different variants are interchangeable, enabling asymmetric retrieval strategies.
Learn more
Cohere Embed
Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications. The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
Learn more
Voyage AI
Voyage AI provides best-in-class embedding models and rerankers designed to supercharge search and retrieval for unstructured data. Its technology powers high-quality Retrieval-Augmented Generation (RAG) by improving how relevant context is retrieved before responses are generated. Voyage AI offers general-purpose, domain-specific, and company-specific models to support a wide range of use cases. The models are optimized for accuracy, low latency, and reduced costs through shorter vector dimensions. With long-context support of up to 32K tokens, Voyage AI enables deeper understanding of complex documents. The platform is modular and integrates easily with any vector database or large language model. Voyage AI is trusted by industry leaders to deliver reliable, factual AI outputs at scale.
Learn more
voyage-code-3
Voyage AI introduces voyage-code-3, a next-generation embedding model optimized for code retrieval. It outperforms OpenAI-v3-large and CodeSage-large by an average of 13.80% and 16.81% on a suite of 32 code retrieval datasets, respectively. It supports embeddings of 2048, 1024, 512, and 256 dimensions and offers multiple embedding quantization options, including float (32-bit), int8 (8-bit signed integer), uint8 (8-bit unsigned integer), binary (bit-packed int8), and ubinary (bit-packed uint8). With a 32 K-token context length, it surpasses OpenAI's 8K and CodeSage Large's 1K context lengths. Voyage-code-3 employs Matryoshka learning to create embeddings with a nested family of various lengths within a single vector. This allows users to vectorize documents into a 2048-dimensional vector and later use shorter versions (e.g., 256, 512, or 1024 dimensions) without re-invoking the embedding model.
Learn more