Alternatives to Chainlit

Compare Chainlit alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Chainlit in 2026. Compare features, ratings, user reviews, pricing, and more from Chainlit competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Chainlit View Software
    Visit Website
  • 2
    Google AI Studio
    Google AI Studio is a comprehensive, web-based development environment that democratizes access to Google's cutting-edge AI models, notably the Gemini family, enabling a broad spectrum of users to explore and build innovative applications. This platform facilitates rapid prototyping by providing an intuitive interface for prompt engineering, allowing developers to meticulously craft and refine their interactions with AI. Beyond basic experimentation, AI Studio supports the seamless integration of AI capabilities into diverse projects, from simple chatbots to complex data analysis tools. Users can rigorously test different prompts, observe model behaviors, and iteratively refine their AI-driven solutions within a collaborative and user-friendly environment. This empowers developers to push the boundaries of AI application development, fostering creativity and accelerating the realization of AI-powered solutions.
    Compare vs. Chainlit View Software
    Visit Website
  • 3
    Gradio

    Gradio

    Gradio

    Build & Share Delightful Machine Learning Apps. Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that lets them interact with the model on your computer remotely from their own devices. Once you've created an interface, you can permanently host it on Hugging Face. Hugging Face Spaces will host the interface on its servers and provide you with a link you can share.
  • 4
    Literal AI

    Literal AI

    Literal AI

    Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
  • 5
    Lunary

    Lunary

    Lunary

    Lunary is an AI developer platform designed to help AI teams manage, improve, and protect Large Language Model (LLM) chatbots. It offers features such as conversation and feedback tracking, analytics on costs and performance, debugging tools, and a prompt directory for versioning and team collaboration. Lunary supports integration with various LLMs and frameworks, including OpenAI and LangChain, and provides SDKs for Python and JavaScript. Guardrails to deflect malicious prompts and sensitive data leaks. Deploy in your VPC with Kubernetes or Docker. Allow your team to judge responses from your LLMs. Understand what languages your users are speaking. Experiment with prompts and LLM models. Search and filter anything in milliseconds. Receive notifications when agents are not performing as expected. Lunary's core platform is 100% open-source. Self-host or in the cloud, get started in minutes.
    Starting Price: $20 per month
  • 6
    Flowise

    Flowise

    Flowise AI

    Flowise is an open-source, low-code platform that enables developers to create customized Large Language Model (LLM) applications through a user-friendly drag-and-drop interface. It supports integration with various LLMs, including LangChain and LlamaIndex, and offers over 100 integrations to facilitate the development of AI agents and orchestration flows. Flowise provides APIs, SDKs, and embedded widgets for seamless incorporation into existing systems, and is platform-agnostic, allowing deployment in air-gapped environments with local LLMs and vector databases.
    Starting Price: Free
  • 7
    NVIDIA NeMo Guardrails
    NVIDIA NeMo Guardrails is an open-source toolkit designed to enhance the safety, security, and compliance of large language model-based conversational applications. It enables developers to define, orchestrate, and enforce multiple AI guardrails, ensuring that generative AI interactions remain accurate, appropriate, and on-topic. The toolkit leverages Colang, a specialized language for designing flexible dialogue flows, and integrates seamlessly with popular AI development frameworks like LangChain and LlamaIndex. NeMo Guardrails offers features such as content safety, topic control, personal identifiable information detection, retrieval-augmented generation enforcement, and jailbreak prevention. Additionally, the recently introduced NeMo Guardrails microservice simplifies rail orchestration with API-based interaction and tools for enhanced guardrail management and maintenance.
  • 8
    LlamaIndex

    LlamaIndex

    LlamaIndex

    LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • 9
    DeepEval

    DeepEval

    Confident AI

    DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
    Starting Price: Free
  • 10
    PromptLayer

    PromptLayer

    PromptLayer

    The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.
    Starting Price: Free
  • 11
    HumanLayer

    HumanLayer

    HumanLayer

    HumanLayer is an API and SDK that enables AI agents to contact humans for feedback, input, and approvals. It guarantees human oversight of high-stakes function calls with approval workflows across Slack, email, and more. By integrating with your preferred Large Language Model (LLM) and framework, HumanLayer empowers AI agents with safe access to the world. The platform supports various frameworks and LLMs, including LangChain, CrewAI, ControlFlow, LlamaIndex, Haystack, OpenAI, Claude, Llama3.1, Mistral, Gemini, and Cohere. HumanLayer offers features such as approval workflows, human-as-tool integration, and custom responses with escalations. Pre-fill response prompts for seamless human-agent interactions. Route to specific individuals or teams, and control which users can approve or respond to LLM requests. Invert the flow of control, from human-initiated to agent-initiated. Add a variety of human contact channels to your agent toolchain.
    Starting Price: $500 per month
  • 12
    LangChain

    LangChain

    LangChain

    LangChain is a powerful, composable framework designed for building, running, and managing applications powered by large language models (LLMs). It offers an array of tools for creating context-aware, reasoning applications, allowing businesses to leverage their own data and APIs to enhance functionality. LangChain’s suite includes LangGraph for orchestrating agent-driven workflows, and LangSmith for agent observability and performance management. Whether you're building prototypes or scaling full applications, LangChain offers the flexibility and tools needed to optimize the LLM lifecycle, with seamless integrations and fault-tolerant scalability.
  • 13
    AI Crypto-Kit
    AI Crypto-Kit empowers developers to build crypto agents by seamlessly integrating leading Web3 platforms like Coinbase, OpenSea, and more to automate real-world crypto/DeFi workflows. Developers can build AI-powered crypto automation in minutes, including applications such as trading agents, community reward systems, Coinbase wallet management, portfolio tracking, market analysis, and yield farming. The platform offers capabilities engineered for crypto agents, including fully managed agent authentication with support for OAuth, API keys, JWT, and automatic token refresh; optimization for LLM function calling to ensure enterprise-grade reliability; support for over 20 agentic frameworks like Pippin, LangChain, and LlamaIndex; integration with more than 30 Web3 platforms, including Binance, Aave, OpenSea, and Chainlink; and SDKs and APIs for agentic app interactions, available in Python and TypeScript.
  • 14
    Langdock

    Langdock

    Langdock

    Native support for ChatGPT and LangChain. Bing, HuggingFace and more coming soon. Add your API documentation manually or import an existing OpenAPI specification. Access the request prompt, parameters, headers, body and more. Inspect detailed live metrics about how your plugin is performing, including latencies, errors, and more. Configure your own dashboards, track funnels and aggregated metrics.
    Starting Price: Free
  • 15
    Atla

    Atla

    Atla

    Atla is the agent observability and evaluation platform that dives deeper to help you find and fix AI agent failures. It provides real‑time visibility into every thought, tool call, and interaction so you can trace each agent run, understand step‑level errors, and identify root causes of failures. Atla automatically surfaces recurring issues across thousands of traces, stops you from manually combing through logs, and delivers specific, actionable suggestions for improvement based on detected error patterns. You can experiment with models and prompts side by side to compare performance, implement recommended fixes, and measure how changes affect completion rates. Individual traces are summarized into clean, readable narratives for granular inspection, while aggregated patterns give you clarity on systemic problems rather than isolated bugs. Designed to integrate with tools you already use, OpenAI, LangChain, Autogen AI, Pydantic AI, and more.
  • 16
    Cognee

    Cognee

    Cognee

    ​Cognee is an open source AI memory engine that transforms raw data into structured knowledge graphs, enhancing the accuracy and contextual understanding of AI agents. It supports various data types, including unstructured text, media files, PDFs, and tables, and integrates seamlessly with several data sources. Cognee employs modular ECL pipelines to process and organize data, enabling AI agents to retrieve relevant information efficiently. It is compatible with vector and graph databases and supports LLM frameworks like OpenAI, LlamaIndex, and LangChain. Key features include customizable storage options, RDF-based ontologies for smart data structuring, and the ability to run on-premises, ensuring data privacy and compliance. Cognee's distributed system is scalable, capable of handling large volumes of data, and is designed to reduce AI hallucinations by providing AI agents with a coherent and interconnected data landscape.
    Starting Price: $25 per month
  • 17
    Dify

    Dify

    Dify

    Dify is an open-source platform designed to streamline the development and operation of generative AI applications. It offers a comprehensive suite of tools, including an intuitive orchestration studio for visual workflow design, a Prompt IDE for prompt testing and refinement, and enterprise-level LLMOps capabilities for monitoring and optimizing large language models. Dify supports integration with various LLMs, such as OpenAI's GPT series and open-source models like Llama, providing flexibility for developers to select models that best fit their needs. Additionally, its Backend-as-a-Service (BaaS) features enable seamless incorporation of AI functionalities into existing enterprise systems, facilitating the creation of AI-powered chatbots, document summarization tools, and virtual assistants.
  • 18
    Arize Phoenix
    Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.
    Starting Price: Free
  • 19
    Klu

    Klu

    Klu

    Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.
  • 20
    AgentAuth

    AgentAuth

    Composio

    AgentAuth is a specialized authentication platform designed to facilitate secure and seamless access for AI agents to over 250 third-party applications and services. It offers comprehensive support for various authentication protocols, ensuring reliable connections with automatic token refresh. The platform integrates seamlessly with leading agentic frameworks such as LangChain, CrewAI, and LlamaIndex, enhancing the capabilities of AI agents. AgentAuth provides a unified dashboard for complete visibility into user-connected accounts, enabling efficient monitoring and issue resolution. It also offers white-labeling options, allowing customization of the authentication process to align with product branding and OAuth developer applications. Committed to high-security standards, AgentAuth complies with SOC 2 Type II and GDPR, employing strong encryption for data protection.
    Starting Price: $99 per month
  • 21
    Llama Guard
    Llama Guard is an open-source safeguard model developed by Meta AI to enhance the safety of large language models in human-AI conversations. It functions as an input-output filter, classifying both prompts and responses into safety risk categories, including toxicity, hate speech, and hallucinations. Trained on a curated dataset, Llama Guard achieves performance on par with or exceeding existing moderation tools like OpenAI's Moderation API and ToxicChat. Its instruction-tuned architecture allows for customization, enabling developers to adapt its taxonomy and output formats to specific use cases. Llama Guard is part of Meta's broader "Purple Llama" initiative, which combines offensive and defensive security strategies to responsibly deploy generative AI models. The model weights are publicly available, encouraging further research and adaptation to meet evolving AI safety needs.
  • 22
    Prompt flow

    Prompt flow

    Microsoft

    Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI.
  • 23
    LangFast

    LangFast

    Langfa.st

    LangFast is a lightweight prompt testing platform designed for product teams, prompt engineers, and developers working with LLMs. It offers instant access to a customizable prompt playground—no signup required. Users can build, test, and share prompt templates using Jinja2 syntax with real-time raw outputs directly from the LLM, without any API abstractions. LangFast eliminates the friction of manual testing by letting teams validate prompts, iterate faster, and collaborate more effectively. Built by a team with experience scaling AI SaaS to 15M+ users, LangFast gives you full control over the prompt development process—while keeping costs predictable through a simple pay-as-you-go model.
    Starting Price: $60 one time
  • 24
    Parea

    Parea

    Parea

    The prompt engineering platform to experiment with different prompt versions, evaluate and compare prompts across a suite of tests, optimize prompts with one-click, share, and more. Optimize your AI development workflow. Key features to help you get and identify the best prompts for your production use cases. Side-by-side comparison of prompts across test cases with evaluation. CSV import test cases, and define custom evaluation metrics. Improve LLM results with automatic prompt and template optimization. View and manage all prompt versions and create OpenAI functions. Access all of your prompts programmatically, including observability and analytics. Determine the costs, latency, and efficacy of each prompt. Start enhancing your prompt engineering workflow with Parea today. Parea makes it easy for developers to improve the performance of their LLM apps through rigorous testing and version control.
  • 25
    AgentSea

    AgentSea

    AgentSea

    AgentSea is an open source platform designed to build, deploy, and share AI agents with ease. It delivers a collection of libraries and tools for building AI agent apps, favoring the UNIX philosophy of doing one thing well. Tools can be used individually or stacked together into a single agent app, and are compatible with frameworks like LlamaIndex and LangChain. Key components include SurfKit, a Kubernetes-style orchestrator for agents; DeviceBay, offering pluggable devices like file systems and desktops; ToolFuse, a library that wraps scripts, third-party apps, and APIs as Tool implementations; AgentD, a daemon making a Linux desktop OS accessible to bots; AgentDesk, a library for running AgentD-powered VMs; Taskara, for task management; ThreadMem, for building multi-role persistent threads; and MLLM, simplifying communication with multiple LLMs and multimodal LLMs. AgentSea also offers alpha agents like SurfPizza and SurfSlicer, which navigate GUIs using multimodal approaches.
    Starting Price: Free
  • 26
    Agency

    Agency

    Agency

    Agency helps enterprises build, evaluate, and monitor AI agents. From the team at AgentOps.ai. Agen.cy (Agency AI) develops cutting edge AI agents using CrewAI, AutoGen, CamelAI, LLamaIndex, Langchain, Cohere, MultiOn + many more.
  • 27
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 28
    DemoGPT

    DemoGPT

    Melih Ünsal

    DemoGPT is an open source platform that simplifies the creation of LLM (Large Language Model) agents by providing an all-in-one toolkit. It offers tools, frameworks, prompts, and models for rapid agent development. The platform automatically generates LangChain code, which can be used for creating interactive applications with Streamlit. DemoGPT translates user instructions into functional applications through a multi-step process: planning, task creation, and code generation. It supports a streamlined approach to building AI-powered agents, offering an accessible environment for developing sophisticated, production-ready solutions with GPT-3.5-turbo. Additionally, it integrates API usage and external API interaction in future updates.
    Starting Price: Free
  • 29
    LangSmith

    LangSmith

    LangChain

    Unexpected results happen all the time. With full visibility into the entire chain sequence of calls, you can spot the source of errors and surprises in real time with surgical precision. Software engineering relies on unit testing to build performant, production-ready applications. LangSmith provides that same functionality for LLM applications. Spin up test datasets, run your applications over them, and inspect results without having to leave LangSmith. LangSmith enables mission-critical observability with only a few lines of code. LangSmith is designed to help developers harness the power–and wrangle the complexity–of LLMs. We’re not only building tools. We’re establishing best practices you can rely on. Build and deploy LLM applications with confidence. Application-level usage stats. Feedback collection. Filter traces, cost and performance measurement. Dataset curation, compare chain performance, AI-assisted evaluation, and embrace best practices.
  • 30
    Cake AI

    Cake AI

    Cake AI

    Cake AI is a comprehensive AI infrastructure platform that enables teams to build and deploy AI applications using hundreds of pre-integrated open source components, offering complete visibility and control. It provides a curated, end-to-end selection of fully managed, best-in-class commercial and open source AI tools, with pre-built integrations across the full breadth of components needed to move an AI application into production. Cake supports dynamic autoscaling, comprehensive security measures including role-based access control and encryption, advanced monitoring, and infrastructure flexibility across various environments, including Kubernetes clusters and cloud services such as AWS. Its data layer equips teams with tools for data ingestion, transformation, and analytics, leveraging tools like Airflow, DBT, Prefect, Metabase, and Superset. For AI operations, Cake integrates with model catalogs like Hugging Face and supports modular workflows using LangChain, LlamaIndex, and more.
  • 31
    Basalt

    Basalt

    Basalt

    Basalt is an AI-building platform that helps teams quickly create, test, and launch better AI features. With Basalt, you can prototype quickly using our no-code playground, allowing you to draft prompts with co-pilot guidance and structured sections. Iterate efficiently by saving and switching between versions and models, leveraging multi-model support and versioning. Improve your prompts with recommendations from our co-pilot. Evaluate and iterate by testing with realistic cases, upload your dataset, or let Basalt generate it for you. Run your prompt at scale on multiple test cases and build confidence with evaluators and expert evaluation sessions. Deploy seamlessly with the Basalt SDK, abstracting and deploying prompts in your codebase. Monitor by capturing logs and monitoring usage in production, and optimize by staying informed of new errors and edge cases.
    Starting Price: Free
  • 32
    mcp-use

    mcp-use

    mcp-use

    mcp-use is an open source development platform offering SDKs, cloud infrastructure, and a developer-friendly control plane for building, managing, and deploying AI agents that leverage the Model Context Protocol (MCP). It enables connection to multiple MCP servers, each exposing specific tool capabilities like browsing, file operations, or specialized integrations, through a unified MCPClient. Developers can create custom agents (via MCPAgent) that dynamically select the most appropriate server for each task using configurable pipelines or a built-in server manager. It simplifies authentication, access control, audit logging, observability, sandboxed runtime environments, and deployment workflows, whether self-hosted or managed, making MCP development production-ready. With integrations for popular frameworks like LangChain (Python) and LangChain.js (TypeScript), mcp-use accelerates the creation of tool-enabled AI agents.
    Starting Price: Free
  • 33
    JinaChat

    JinaChat

    Jina AI

    Experience JinaChat, a pioneering LLM service tailored for pro users. JinaChat ushers in a new era of multimodal chat capabilities, extending beyond text to incorporate images and more. Delight in our offer of free short interactions under 100 tokens. Our API empowers developers to leverage long conversation histories and eliminate redundant prompts to build complex applications. Dive headfirst into the future of LLM services with JinaChat, where conversations are multimodal, long-memory, and affordable. Modern LLM applications often hinge on lengthy prompts or extensive memory, leading to high costs when similar prompts are repeatedly sent to the server with only minor changes. JinaChat's API solves this problem by letting you carry forward previous conversations without resending the entire prompt. This saves you both time and money, making it the perfect tool for developing complex applications like AutoGPT.
    Starting Price: $9.99 per month
  • 34
    Langtail

    Langtail

    Langtail

    Langtail is a cloud-based application development tool designed to help companies debug, test, deploy, and monitor LLM-powered apps with ease. The platform offers a no-code playground for debugging prompts, fine-tuning model parameters, and running LLM tests to prevent issues when models or prompts change. Langtail specializes in LLM testing, including chatbot testing and ensuring robust AI LLM test prompts. With its comprehensive features, Langtail enables teams to: • Test LLM models thoroughly to catch potential issues before they affect production environments. • Deploy prompts as API endpoints for seamless integration. • Monitor model performance in production to ensure consistent outcomes. • Use advanced AI firewall capabilities to safeguard and control AI interactions. Langtail is the ideal solution for teams looking to ensure the quality, stability, and security of their LLM and AI-powered applications.
    Starting Price: $99/month/unlimited users
  • 35
    LangWatch

    LangWatch

    LangWatch

    Guardrails are crucial in AI maintenance, LangWatch safeguards you and your business from exposing sensitive data, prompt injection and keeps your AI from going off the rails, avoiding unforeseen damage to your brand. Understanding the behaviour of both AI and users can be challenging for businesses with integrated AI. Ensure accurate and appropriate responses by constantly maintaining quality through oversight. LangWatch’s safety checks and guardrails prevent common AI issues including jailbreaking, exposing sensitive data, and off-topic conversations. Track conversion rates, output quality, user feedback and knowledge base gaps with real-time metrics — gain constant insights for continuous improvement. Powerful data evaluation allows you to evaluate new models and prompts, develop datasets for testing and run experimental simulations on tailored builds.
    Starting Price: €99 per month
  • 36
    Microsoft Foundry Models
    Microsoft Foundry Models is a unified model catalog that gives enterprises access to more than 11,000 AI models from Microsoft, OpenAI, Anthropic, Mistral AI, Meta, Cohere, DeepSeek, xAI, and others. It allows teams to explore, test, and deploy models quickly using a task-centric discovery experience and integrated playground. Organizations can fine-tune models with ready-to-use pipelines and evaluate performance using their own datasets for more accurate benchmarking. Foundry Models provides secure, scalable deployment options with serverless and managed compute choices tailored to enterprise needs. With built-in governance, compliance, and Azure’s global security framework, businesses can safely operationalize AI across mission-critical workflows. The platform accelerates innovation by enabling developers to build, iterate, and scale AI solutions from one centralized environment.
  • 37
    SciPhi

    SciPhi

    SciPhi

    Intuitively build your RAG system with fewer abstractions compared to solutions like LangChain. Choose from a wide range of hosted and remote providers for vector databases, datasets, Large Language Models (LLMs), application integrations, and more. Use SciPhi to version control your system with Git and deploy from anywhere. The platform provided by SciPhi is used internally to manage and deploy a semantic search engine with over 1 billion embedded passages. The team at SciPhi will assist in embedding and indexing your initial dataset in a vector database. The vector database is then integrated into your SciPhi workspace, along with your selected LLM provider.
    Starting Price: $249 per month
  • 38
    ConfidentialMind

    ConfidentialMind

    ConfidentialMind

    We've done the work of bundling and pre-configuring all the components you need for building solutions and integrating LLMs directly into your business processes. With ConfidentialMind you can jump right into action. Deploys an endpoint for the most powerful open source LLMs like Llama-2, turning it into an internal LLM API. Imagine ChatGPT in your very own cloud. This is the most secure solution possible. Connects the rest of the stack with the APIs of the largest hosted LLM providers like Azure OpenAI, AWS Bedrock, or IBM. ConfidentialMind deploys a playground UI based on Streamlit with a selection of LLM-powered productivity tools for your company such as writing assistants and document analysts. Includes a vector database, critical components for the most common LLM applications for shifting through massive knowledge bases with thousands of documents efficiently. Allows you to control the access to the solutions your team builds and what data the LLMs have access to.
  • 39
    LangMem

    LangMem

    LangChain

    LangMem is a lightweight, flexible Python SDK from LangChain that equips AI agents with long-term memory capabilities, enabling them to extract, store, update, and retrieve meaningful information from past interactions to become smarter and more personalized over time. It supports three memory types and offers both hot-path tools for real-time memory management and background consolidation for efficient updates beyond active sessions. Through a storage-agnostic core API, LangMem integrates seamlessly with any backend and offers native compatibility with LangGraph’s long-term memory store, while also allowing type-safe memory consolidation using schemas defined in Pydantic. Developers can incorporate memory tools into agents using simple primitives to enable seamless memory creation, retrieval, and prompt optimization within conversational flows.
  • 40
    MakerSuite
    MakerSuite is a tool that simplifies this workflow. With MakerSuite, you’ll be able to iterate on prompts, augment your dataset with synthetic data, and easily tune custom models. When you’re ready to move to code, MakerSuite will let you export your prompt as code in your favorite languages and frameworks, like Python and Node.js.
  • 41
    Beakr

    Beakr

    Beakr

    Try different prompts and find what works best. Track the latency and cost of each prompt. Set up your prompts with dynamic variables. Call them via API and insert variables into the prompt. Combine the power of different LLMs within your application. Track the latency and cost of requests to optimize what works best. Test different prompts and save your favorite ones.
  • 42
    Maxim

    Maxim

    Maxim

    Maxim is an agent simulation, evaluation, and observability platform that empowers modern AI teams to deploy agents with quality, reliability, and speed. Maxim's end-to-end evaluation and data management stack covers every stage of the AI lifecycle, from prompt engineering to pre & post release testing and observability, data-set creation & management, and fine-tuning. Use Maxim to simulate and test your multi-turn workflows on a wide variety of scenarios and across different user personas before taking your application to production. Features: Agent Simulation Agent Evaluation Prompt Playground Logging/Tracing Workflows Custom Evaluators- AI, Programmatic and Statistical Dataset Curation Human-in-the-loop Use Case: Simulate and test AI agents Evals for agentic workflows: pre and post-release Tracing and debugging multi-agent workflows Real-time alerts on performance and quality Creating robust datasets for evals and fine-tuning Human-in-the-loop workflows
    Starting Price: $29/seat/month
  • 43
    Llama Stack
    Llama Stack is a modular framework designed to streamline the development of applications powered by Meta's Llama language models. It offers a client-server architecture with flexible configurations, allowing developers to mix and match various providers for components such as inference, memory, agents, telemetry, and evaluations. The framework includes pre-configured distributions tailored for different deployment scenarios, enabling seamless transitions from local development to production environments. Developers can interact with the Llama Stack server using client SDKs available in multiple programming languages, including Python, Node.js, Swift, and Kotlin. Comprehensive documentation and example applications are provided to assist users in building and deploying Llama-based applications efficiently.
    Starting Price: Free
  • 44
    Semantic Kernel
    Semantic Kernel is a lightweight, open-source development kit that lets you easily build AI agents and integrate the latest AI models into your C#, Python, or Java codebase. It serves as an efficient middleware that enables rapid delivery of enterprise-grade solutions. Microsoft and other Fortune 500 companies are already leveraging Semantic Kernel because it’s flexible, modular, and observable. Backed with security-enhancing capabilities like telemetry support, hooks, and filters you’ll feel confident you’re delivering responsible AI solutions at scale. Version 1.0+ support across C#, Python, and Java means it’s reliable, and committed to nonbreaking changes. Any existing chat-based APIs are easily expanded to support additional modalities like voice and video. Semantic Kernel was designed to be future-proof, easily connecting your code to the latest AI models evolving with the technology as it advances.
    Starting Price: Free
  • 45
    vishwa.ai

    vishwa.ai

    vishwa.ai

    vishwa.ai is an AutoOps platform for AI and ML use cases. It provides expert prompt delivery, fine-tuning, and monitoring of Large Language Models (LLMs). Features: Expert Prompt Delivery: Tailored prompts for various applications. Create no-code LLM Apps: Build LLM workflows in no time with our drag-n-drop UI Advanced Fine-Tuning: Customization of AI models. LLM Monitoring: Comprehensive oversight of model performance. Integration and Security Cloud Integration: Supports Google Cloud, AWS, Azure. Secure LLM Integration: Safe connection with LLM providers. Automated Observability: For efficient LLM management. Managed Self-Hosting: Dedicated hosting solutions. Access Control and Audits: Ensuring secure and compliant operations.
    Starting Price: $39 per month
  • 46
    StableVicuna

    StableVicuna

    Stability AI

    StableVicuna is the first large-scale open source chatbot trained via reinforced learning from human feedback (RHLF). StableVicuna is a further instruction fine tuned and RLHF trained version of Vicuna v0 13b, which is an instruction fine tuned LLaMA 13b model. In order to achieve StableVicuna’s strong performance, we utilize Vicuna as the base model and follow the typical three-stage RLHF pipeline outlined by Steinnon et al. and Ouyang et al. Concretely, we further train the base Vicuna model with supervised finetuning (SFT) using a mixture of three datasets: OpenAssistant Conversations Dataset (OASST1), a human-generated, human-annotated assistant-style conversation corpus comprising 161,443 messages distributed across 66,497 conversation trees, in 35 different languages; GPT4All Prompt Generations, a dataset of 437,605 prompts and responses generated by GPT-3.5 Turbo; And Alpaca, a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003.
    Starting Price: Free
  • 47
    LlamaCloud

    LlamaCloud

    LlamaIndex

    LlamaCloud, developed by LlamaIndex, is a fully managed service for parsing, ingesting, and retrieving data, enabling companies to create and deploy AI-driven knowledge applications. It provides a flexible and scalable pipeline for handling data in Retrieval-Augmented Generation (RAG) scenarios. LlamaCloud simplifies data preparation for LLM applications, allowing developers to focus on building business logic instead of managing data.
  • 48
    Instructor

    Instructor

    Instructor

    Instructor is a tool that enables developers to extract structured data from natural language using Large Language Models (LLMs). Integrating with Python's Pydantic library allows users to define desired output structures through type hints, facilitating schema validation and seamless integration with IDEs. Instructor supports various LLM providers, including OpenAI, Anthropic, Litellm, and Cohere, offering flexibility in implementation. Its customizable nature permits the definition of validators and custom error messages, enhancing data validation processes. Instructor is trusted by engineers from platforms like Langflow, underscoring its reliability and effectiveness in managing structured outputs powered by LLMs. Instructor is powered by Pydantic, which is powered by type hints. Schema validation and prompting are controlled by type annotations; less to learn, and less code to write, and it integrates with your IDE.
    Starting Price: Free
  • 49
    Lamatic.ai

    Lamatic.ai

    Lamatic.ai

    A managed PaaS with a low-code visual builder, VectorDB, and integrations to apps and models for building, testing, and deploying high-performance AI apps on edge. Eliminate costly, error-prone work. Drag and drop models, apps, data, and agents to find what works best. Deploy in under 60 seconds and cut latency in half. Observe, test, and iterate seamlessly. Visibility and tools ensure accuracy and reliability. Make data-driven decisions with request, LLM, and usage reports. See real-time traces by node. Experiments make it easy to optimize everything always embeddings, prompts, models, and more. Everything you need to launch & iterate at scale. Community of bright-minded builders sharing insights, experience & feedback. Distilling the best tips, tricks & techniques for AI application development. An elegant platform to build agentic systems like a team of 100. An intuitive and simple frontend to collaborate and manage AI applications seamlessly.
    Starting Price: $100 per month
  • 50
    Portkey

    Portkey

    Portkey.ai

    Launch production-ready apps with the LMOps stack for monitoring, model management, and more. Replace your OpenAI or other provider APIs with the Portkey endpoint. Manage prompts, engines, parameters, and versions in Portkey. Switch, test, and upgrade models with confidence! View your app performance & user level aggregate metics to optimise usage and API costs Keep your user data secure from attacks and inadvertent exposure. Get proactive alerts when things go bad. A/B test your models in the real world and deploy the best performers. We built apps on top of LLM APIs for the past 2 and a half years and realised that while building a PoC took a weekend, taking it to production & managing it was a pain! We're building Portkey to help you succeed in deploying large language models APIs in your applications. Regardless of you trying Portkey, we're always happy to help!
    Starting Price: $49 per month