Kimi K2
Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.
Learn more
Reka Flash 3
Reka Flash 3 is a 21-billion-parameter multimodal AI model developed by Reka AI, designed to excel in general chat, coding, instruction following, and function calling. It processes and reasons with text, images, video, and audio inputs, offering a compact, general-purpose solution for various applications. Trained from scratch on diverse datasets, including publicly accessible and synthetic data, Reka Flash 3 underwent instruction tuning on curated, high-quality data to optimize performance. The final training stage involved reinforcement learning using REINFORCE Leave One-Out (RLOO) with both model-based and rule-based rewards, enhancing its reasoning capabilities. With a context length of 32,000 tokens, Reka Flash 3 performs competitively with proprietary models like OpenAI's o1-mini, making it suitable for low-latency or on-device deployments. The model's full precision requires 39GB (fp16), but it can be compressed to as small as 11GB using 4-bit quantization.
Learn more
Kimi K2 Thinking
Kimi K2 Thinking is an advanced open source reasoning model developed by Moonshot AI, designed specifically for long-horizon, multi-step workflows where the system interleaves chain-of-thought processes with tool invocation across hundreds of sequential tasks. The model uses a mixture-of-experts architecture with a total of 1 trillion parameters, yet only about 32 billion parameters are activated per inference pass, optimizing efficiency while maintaining vast capacity. It supports a context window of up to 256,000 tokens, enabling the handling of extremely long inputs and reasoning chains without losing coherence. Native INT4 quantization is built in, which reduces inference latency and memory usage without performance degradation. Kimi K2 Thinking is explicitly built for agentic workflows; it can autonomously call external tools, manage sequential logic steps (up to and typically between 200-300 tool calls in a single chain), and maintain consistent reasoning.
Learn more
ChatGLM
ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. Combined with model quantization technology, users can deploy locally on consumer-grade graphics cards (only 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese Q&A and dialogue. After about 1T identifiers of Chinese and English bilingual training, supplemented by supervision and fine-tuning, feedback self-help, human feedback reinforcement learning and other technologies, ChatGLM-6B with 6.2 billion parameters has been able to generate answers that are quite in line with human preferences.
Learn more