Qdrant
Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more!
Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality.
Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results.
Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
Learn more
Minitab Statistical Software
For 50 years, Minitab has helped thousands of companies and institutions spot trends, solve problems, and discover valuable insights in their data through our comprehensive, best-in-class suite of data analysis and process improvement tools.
Our namesake product, Minitab Statistical Software, leads the way in data analysis with the power to visualize, analyze and harness your data to gain insights and solve your toughest challenges. Access trusted, proven and modern analytics combined with dynamic visualizations to empower you and your decisions.
The latest version of Minitab Statistical Software includes access to Minitab on the cloud so you can analyze from anywhere, and Graph Builder, our new interactive tool to instantly create multiple graph options at once. Minitab offers modules for Predictive Analytics and Healthcare to boost your analytics even further.
Available in 8 languages: English, Chinese, French, German, Japanese, Korean, Spanish, and Portuguese.
Learn more
MLBox
MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
Learn more
Ensemble Dark Matter
Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain.
Learn more