14 Integrations with Batteries Included
View a list of Batteries Included integrations and software that integrates with Batteries Included below. Compare the best Batteries Included integrations as well as features, ratings, user reviews, and pricing of software that integrates with Batteries Included. Here are the current Batteries Included integrations in 2025:
-
1
Docker
Docker
Docker takes away repetitive, mundane configuration tasks and is used throughout the development lifecycle for fast, easy and portable application development, desktop and cloud. Docker’s comprehensive end-to-end platform includes UIs, CLIs, APIs and security that are engineered to work together across the entire application delivery lifecycle. Get a head start on your coding by leveraging Docker images to efficiently develop your own unique applications on Windows and Mac. Create your multi-container application using Docker Compose. Integrate with your favorite tools throughout your development pipeline, Docker works with all development tools you use including VS Code, CircleCI and GitHub. Package applications as portable container images to run in any environment consistently from on-premises Kubernetes to AWS ECS, Azure ACI, Google GKE and more. Leverage Docker Trusted Content, including Docker Official Images and images from Docker Verified Publishers.Starting Price: $7 per month -
2
Redis
Redis Labs
Redis Labs: home of Redis. Redis Enterprise is the best version of Redis. Go beyond cache; try Redis Enterprise free in the cloud using NoSQL & data caching with the world’s fastest in-memory database. Run Redis at scale, enterprise grade resiliency, massive scalability, ease of management, and operational simplicity. DevOps love Redis in the Cloud. Developers can access enhanced data structures, a variety of modules, and rapid innovation with faster time to market. CIOs love the confidence of working with 99.999% uptime best in class security and expert support from the creators of Redis. Implement relational databases, active-active, geo-distribution, built in conflict distribution for simple and complex data types, & reads/writes in multiple geo regions to the same data set. Redis Enterprise offers flexible deployment options, cloud on-prem, & hybrid. Redis Labs: home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.Starting Price: Free -
3
Python
Python
The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. Whether you're new to programming or an experienced developer, it's easy to learn and use Python. Python can be easy to pick up whether you're a first-time programmer or you're experienced with other languages. The following pages are a useful first step to get on your way to writing programs with Python! The community hosts conferences and meetups to collaborate on code, and much more. Python's documentation will help you along the way, and the mailing lists will keep you in touch. The Python Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python's standard library and the community-contributed modules allow for endless possibilities.Starting Price: Free -
4
Azure Blob Storage
Microsoft
Massively scalable and secure object storage for cloud-native workloads, archives, data lakes, high-performance computing, and machine learning. Azure Blob Storage helps you create data lakes for your analytics needs, and provides storage to build powerful cloud-native and mobile apps. Optimize costs with tiered storage for your long-term data, and flexibly scale up for high-performance computing and machine learning workloads. Blob storage is built from the ground up to support the scale, security, and availability needs of mobile, web, and cloud-native application developers. Use it as a cornerstone for serverless architectures such as Azure Functions. Blob storage supports the most popular development frameworks, including Java, .NET, Python, and Node.js, and is the only cloud storage service that offers a premium, SSD-based object storage tier for low-latency and interactive scenarios.Starting Price: $0.00099 -
5
R
The R Foundation
R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity. One of R’s strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed.Starting Price: Free -
6
Llama 3
Meta
We’ve integrated Llama 3 into Meta AI, our intelligent assistant, that expands the ways people can get things done, create and connect with Meta AI. You can see first-hand the performance of Llama 3 by using Meta AI for coding tasks and problem solving. Whether you're developing agents, or other AI-powered applications, Llama 3 in both 8B and 70B will offer the capabilities and flexibility you need to develop your ideas. With the release of Llama 3, we’ve updated the Responsible Use Guide (RUG) to provide the most comprehensive information on responsible development with LLMs. Our system-centric approach includes updates to our trust and safety tools with Llama Guard 2, optimized to support the newly announced taxonomy published by MLCommons expanding its coverage to a more comprehensive set of safety categories, code shield, and Cybersec Eval 2.Starting Price: Free -
7
Llama 3.1
Meta
The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.Starting Price: Free -
8
Llama 3.2
Meta
The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.Starting Price: Free -
9
Llama 3.3
Meta
Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.Starting Price: Free -
10
Knative
Google
Knative, created originally by Google with contributions from over 50 different companies, delivers an essential set of components to build and run serverless applications on Kubernetes. Knative offers features like scale-to-zero, autoscaling, in-cluster builds, and eventing framework for cloud-native applications on Kubernetes. Whether on-premises, in the cloud, or in a third-party data center, Knative codifies the best practices shared by successful real-world Kubernetes-based frameworks. Most importantly, Knative enables developers to focus on writing code without the need to worry about the “boring but difficult” parts of building, deploying, and managing their application. -
11
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
12
OAuth
OAuth.io
Focus on your core app and get to market faster. OAuth.io handles identity infrastructure, maintenance, and security overhead, so your team doesn’t have to. Identity can be difficult, OAuth.io makes it easy. Choose identity providers, add custom attributes, customize your login page or use our widget, integrate with your app - identity solved in minutes. Manage your users from our easy to use dashboard - find and manage users, reset passwords, enforce two-factor authentication, and add memberships and permissions through OAuth.io's simple and easy to use User Management. Fully-featured, hyper-secure user authentication using passwords or tokens. From multi-tenant to complex permissions, OAuth.io has your user authorization modeling covered. Force a second factor of user authentication with our popular integrations.Starting Price: $19 per month -
13
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL is a powerful, open-source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance. There is a wealth of information to be found describing how to install and use PostgreSQL through the official documentation. The open-source community provides many helpful places to become familiar with PostgreSQL, discover how it works, and find career opportunities. Learm more on how to engage with the community. The PostgreSQL Global Development Group has released an update to all supported versions of PostgreSQL, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23. This release fixes 25 bugs reported over the last several months. This is the final release of PostgreSQL 10. PostgreSQL 10 will no longer receive security and bug fixes. If you are running PostgreSQL 10 in a production environment, we suggest that you make plans to upgrade. -
14
Llama
Meta
Llama (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as Llama enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like Llama is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making Llama available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a Llama model card that details how we built the model in keeping with our approach to Responsible AI practices.
- Previous
- You're on page 1
- Next