ByteRover
ByteRover is a self-improving memory layer for AI coding agents that unifies the creation, retrieval, and sharing of “vibe-coding” memories across projects and teams. Designed for dynamic AI-assisted development, it integrates into any AI IDE via the Memory Compatibility Protocol (MCP) extension, enabling agents to automatically save and recall context without altering existing workflows. It provides instant IDE integration, automated memory auto-save and recall, intuitive memory management (create, edit, delete, and prioritize memories), and team-wide intelligence sharing to enforce consistent coding standards. These capabilities let developer teams of all sizes maximize AI coding efficiency, eliminate repetitive training, and maintain a centralized, searchable memory store. Install ByteRover’s extension in your IDE to start capturing and leveraging agent memory across projects in seconds.
Learn more
EverMemOS
EverMemOS is a memory-operating system built to give AI agents continuous, long-term, context-rich memory so they can understand, reason, and evolve over time. It goes beyond traditional “stateless” AI; instead of forgetting past interactions, it uses layered memory extraction, structured knowledge organization, and adaptive retrieval mechanisms to build coherent narratives from scattered interactions, allowing the AI to draw on past conversations, user history, or stored knowledge dynamically. On the benchmark LoCoMo, EverMemOS achieved a reasoning accuracy of 92.3%, outperforming comparable memory-augmented systems. Through its core engine (EverMemModel), the platform supports parametric long-context understanding by leveraging the model’s KV cache, enabling training end-to-end rather than relying solely on retrieval-augmented generation.
Learn more
LangMem
LangMem is a lightweight, flexible Python SDK from LangChain that equips AI agents with long-term memory capabilities, enabling them to extract, store, update, and retrieve meaningful information from past interactions to become smarter and more personalized over time. It supports three memory types and offers both hot-path tools for real-time memory management and background consolidation for efficient updates beyond active sessions. Through a storage-agnostic core API, LangMem integrates seamlessly with any backend and offers native compatibility with LangGraph’s long-term memory store, while also allowing type-safe memory consolidation using schemas defined in Pydantic. Developers can incorporate memory tools into agents using simple primitives to enable seamless memory creation, retrieval, and prompt optimization within conversational flows.
Learn more
Pinecone
The AI Knowledge Platform.
The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles.
Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval.
Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results.
Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
Learn more