Azure Managed Redis
Azure Managed Redis features the latest Redis innovations, industry-leading availability, and a cost-effective Total Cost of Ownership (TCO) designed for the hyperscale cloud. Azure Managed Redis delivers these capabilities on a trusted cloud platform, empowering businesses to scale and optimize their generative AI applications seamlessly. Azure Managed Redis brings the latest Redis innovations to support high-performance, scalable AI applications. With features like in-memory data storage, vector similarity search, and real-time processing, it enables developers to handle large datasets efficiently, accelerate machine learning, and build faster AI solutions. Its interoperability with Azure OpenAI Service enables AI workloads to be faster, scalable, and ready for mission-critical use cases, making it an ideal choice for building modern, intelligent applications.
Learn more
Microsoft Foundry Models
Microsoft Foundry Models is a unified model catalog that gives enterprises access to more than 11,000 AI models from Microsoft, OpenAI, Anthropic, Mistral AI, Meta, Cohere, DeepSeek, xAI, and others. It allows teams to explore, test, and deploy models quickly using a task-centric discovery experience and integrated playground. Organizations can fine-tune models with ready-to-use pipelines and evaluate performance using their own datasets for more accurate benchmarking. Foundry Models provides secure, scalable deployment options with serverless and managed compute choices tailored to enterprise needs. With built-in governance, compliance, and Azure’s global security framework, businesses can safely operationalize AI across mission-critical workflows. The platform accelerates innovation by enabling developers to build, iterate, and scale AI solutions from one centralized environment.
Learn more
Oumi
Oumi is a fully open source platform that streamlines the entire lifecycle of foundation models, from data preparation and training to evaluation and deployment. It supports training and fine-tuning models ranging from 10 million to 405 billion parameters using state-of-the-art techniques such as SFT, LoRA, QLoRA, and DPO. The platform accommodates both text and multimodal models, including architectures like Llama, DeepSeek, Qwen, and Phi. Oumi offers tools for data synthesis and curation, enabling users to generate and manage training datasets effectively. For deployment, it integrates with popular inference engines like vLLM and SGLang, ensuring efficient model serving. The platform also provides comprehensive evaluation capabilities across standard benchmarks to assess model performance. Designed for flexibility, Oumi can run on various environments, from local laptops to cloud infrastructures such as AWS, Azure, GCP, and Lambda.
Learn more
Visual Layer
Visual Layer is a platform for working with large volumes of image and video data. It supports visual search, filtering, tagging, and dataset structuring across raw files, metadata, and labels. No code is required, and both technical and non-technical teams use it in production. Common applications include curating datasets for machine learning, auditing visual content for compliance, reviewing surveillance material, and preparing media for downstream platforms.
The platform detects duplicates, mislabeled items, outliers, and low-quality files to improve data quality before model training or operational decision-making. It is model-agnostic, supports both cloud and on-premise deployment, and is built by the creators of Fastdup, the widely used open-source tool for visual deduplication.
Learn more